Decision-making models in the behavioral, cognitive, and neural sciences typically consist of forced-choice paradigms with two alternatives. While theoretically it is feasible to translate any decision situation to a sequence of binary choices, real-life decision-making is typically more complex and nonlinear, involving choices among multiple items, graded judgments, and deferments of decision-making. Here, we discuss how the complexity of real-life decision-making can be addressed using conventional decision-making models by focusing on the interactive dynamics between criteria settings and the collection of evidence. Decision-makers can engage in multi-stage, parallel decision-making by exploiting the space for deliberation, with non-binary readings of evidence available at any point in time. The interactive dynamics principally adhere to the speed-accuracy tradeoff, such that increasing the space for deliberation enables extended data collection. The setting of space for deliberation reflects a form of meta-decision-making that can, and should be, studied empirically as a value-based exercise that weighs the prior propensities, the economics of information seeking, and the potential outcomes. Importantly, the control of the space for deliberation raises a question of agency. Decision-makers may actively and explicitly set their own decision parameters, but these parameters may also be set by environmental pressures. Thus, decision-makers may be influenced-or nudged in a particular direction-by how decision problems are framed, with a sense of urgency or a binary definition of choice options. We argue that a proper understanding of these mechanisms has important practical implications toward the optimal usage of space for deliberation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8448799 | PMC |
http://dx.doi.org/10.1007/s11571-021-09681-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!