The (spatio-temporal pike ttern etection and valuation) method was developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel spike trains). However, depending on the number of spike trains and the length of recording, this method can exhibit long runtimes. Based on a realistic benchmark data set, we identified that the combination of pattern mining (using the algorithm) and the result filtering account for 85-90% of the method's total runtime. Therefore, in this paper, we propose a customized implementation tailored to the requirements of , which significantly accelerates pattern mining and result filtering. Our version allows for parallel and distributed execution, and due to the improvements made, an execution on heterogeneous and low-power embedded devices is now also possible. The implementation has been evaluated using a traditional workstation based on an Intel Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver platform RECS|Box has been used for evaluating the implementation on two HiSilicon Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX, and Jetson TX2). Depending on the platform, our implementation is between 27 and 200 times faster than the original implementation. At the same time, the energy consumption was reduced by up to two orders of magnitude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8483730PMC
http://dx.doi.org/10.3389/fninf.2021.723406DOI Listing

Publication Analysis

Top Keywords

spike trains
8
pattern mining
8
result filtering
8
intel broadwell
8
broadwell xeon
8
xavier jetson
8
implementation
6
acceleration spade
4
spade method
4
method custom-tailored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!