Background: Many factors can contribute to the exact makeup of the salivary microbiome. Differences in the oral microbiome occur with old age, which may be due to oral conditions and diseases associated with old age, such as edentulism, as well as other unknown causes.
Methods: The salivary microbiome was sampled in patients from a large urban clinic. For all subjects age, gender, periodontal status, caries status, presence of edentulism, medications, and tobacco usage were recorded. Multifactor analysis was used to study variation in salivary microbiome profiles linked to these factors.
Results: In the population sampled, there were significantly higher numbers of edentulous subjects, and increased levels of polypharmacy found with aging. Large differences in alpha diversity and beta diversity of the salivary microbiome in the old age group were largely linked to edentulism. However, multivariable analysis revealed, even after adjusting for differences in edentulism, polypharmacy, tobacco usage, periodontal disease, caries level, and gender, that old age itself was associated with lower levels of taxa Porphyromonas endodontalis, Alloprevotella tannerae, Filifactor alocis, Treponema, Lautropia Mirabilis and Pseudopropionibacterium sp._HMT_194. Surprisingly, of these taxa, most were ones known to reside on or near tooth surfaces.
Conclusions: Another factor or factors beyond edentulism, polypharmacy and periodontal disease play a role in the differences seen in oral microbiome with old age. The nature of this factor(s) is not known.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489047 | PMC |
http://dx.doi.org/10.1186/s12903-021-01828-1 | DOI Listing |
Sci Rep
January 2025
Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom.
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.
View Article and Find Full Text PDFArch Oral Biol
December 2024
Department of Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, University of Rochester, NY, USA. Electronic address:
Objectives: This systematic review investigates the association of oral microbiome dysbiosis with Sjogren Syndrome (SS).
Materials And Methods: Indexed databases (PubMed/Medline, EMBASE, OVID, Web of Science, and Scopus) were independently searched for relevant manuscripts published until August 2024. Clinical studies on oral microbial flora count and diversity in SS patients were included.
Microbiome
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Health and Genomics, FISABIO Foundation, Valencia, Spain.
We have previously demonstrated that subgingival levels of nitrate-reducing bacteria, as well as the in vitro salivary nitrate reduction capacity (NRC), were diminished in periodontitis patients, increasing after periodontal treatment. However, it remains unclear if an impaired NRC in periodontitis can affect systemic health. To determine this, the effect of nitrate-rich beetroot juice (BRJ) on blood pressure was determined in 15 periodontitis patients before and 70 days after periodontal treatment (i.
View Article and Find Full Text PDFAm J Med Sci
January 2025
University of Arizona College of Medicine - Tucson, AZ, USA; Medical Scientist Training MD-PhD Program, University of Arizona College of Medicine Tucson, AZ, USA. Electronic address:
Cancers of the oral cavity, lip, salivary gland, and oropharynx cause substantial global disease burden. While tobacco-use and alcohol use are highly associated with oral cancers, the rising incidence of disease in patients who do not use tobacco or alcohol points to additional carcinogenic risk factors. Chronic inflammation, disruption of the oral microbiome, and dysbiosis are becoming more widely implicated in the pathogenesis of oral cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!