Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoporous graphenes (NPGs) have recently attracted huge attention owing to their designable structures and diverse properties. Many important properties of NPGs are determined by their structural regularity and homogeneity. The mass production of NPGs with periodic well-defined pore structures under a solvent-free green synthesis poses a great challenge and is largely unexplored. A facile synthetic strategy of NPGs pressing organization calcination (POC) of readily available halogenated polycyclic aromatic hydrocarbons is developed. The gram-scale synthesized NPGs have ordered structures and possess well-defined nanopores, which can be easily exfoliated to few layers and oxidized in controllable approaches. After being decorated with oxygen species, the oxidized NPGs with tunable catalytic centers exhibit high activity, selectivity, and stability toward electrochemical hydrogen peroxide generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c11673 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!