Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, moisture buffering materials for interior finishing have received much attention for their ability to regulate indoor humidity passively. It is necessary to investigate the potential of such materials' moisture buffering performance before application because the effect is highly climate and material dependent. However, existing studies in China lack a comprehensive overview of the moisture buffering potential of different interior finishing materials throughout the large country with a wide spectrum of climates. This paper aims to outline the moisture buffering potential for office buildings in various climates in China through numerical methods. Specifically, simulations in 15 representative Chinese cities are conducted with five interior finishing materials under two heating, ventilation, and air conditioning (HVAC) scenarios. The results show that the moisture buffering materials hold a general potential to regulate indoor humidity conditions and reduce buildings' HVAC load. Such benefits are evident in the mild climate but weak in humid areas. The moisture buffering effect also displays significant seasonal variations and could worsen indoor humidity conditions in some cases, indicating the importance of utilizing moisture buffering materials properly. In addition, although moisture buffering materials can reduce the HVAC load, the reduction is limited, within 3 kWh/m, in most simulated cases. The energy-saving benefits of moisture buffering materials should thus not be over-emphasized. Finally, suggestions are put forward to instruct the choice of interior finishing material according to climate and buildings' HVAC scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-16684-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!