A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Establish intelligent detection system to evaluate the sugar smoking of chicken thighs. | LitMetric

The objective of this study was to establish a standardized color detection method to achieve low-cost, rapid, nonintrusive and accurate characterization of the color change of smoked chicken thighs during the smoking process. This study was based on machine vision technology using the Mean algorithm, K-means algorithm and K-means algorithm + image noise reduction algorithm to establish 3 colorimetric cards for the color of sugar-smoked chicken thighs. The accuracy of the 3 colorimetric cards was verified by the K-medoids algorithm and sensory analysis, respectively. Results showed that all 3 colorimetric cards had significant color gradient changes. From the K-medoids algorithm, the accuracy of the colorimetric card produced by the Mean algorithm, K-means algorithm and K-means algorithm + image noise reduction algorithm was 87.2, 95.1, and 96.7%, respectively. Meanwhile, the verification results of the sensory analysis showed that the accuracy of the Mean algorithm, K-means algorithm and K-means algorithm + image noise reduction algorithm colorimetric card was 69.4, 80.9, and 79.2%, respectively. A comparative analysis found that the colorimetric cards produced by the K-means algorithm and K-means algorithm + image noise reduction have excellent accuracy. These 2 colorimetric cards could become a suitable method for rapid, low-cost, and accurate online color monitoring of smoked chicken.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496180PMC
http://dx.doi.org/10.1016/j.psj.2021.101447DOI Listing

Publication Analysis

Top Keywords

algorithm k-means
28
colorimetric cards
20
k-means algorithm
16
k-means algorithm + image
16
algorithm + image noise
16
noise reduction
16
chicken thighs
12
algorithm
12
reduction algorithm
12
accuracy colorimetric
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!