Severe anorexia limits the clinical application of cisplatin, and even leads to the discontinuation of treatment. However, the mechanisms underlying cisplatin-induced anorexia are unknown. Herein, we demonstrated that cisplatin could affect neuronal gamma oscillations and induce abnormal neuronal theta-gamma phase-amplitude coupling in the arcuate nucleus (Arc) of the hypothalamus, and these findings were associated with significantly decreased food intake and weight loss in mice. Chemogenetic activation of AgRP neurons in the Arc reversed the cisplatin-induced food intake reduction in mice. We further demonstrated that endothelial peroxynitrite (ONOO) formation in the Arc induced nitrosative stress following cisplatin treatment via a previously uncharacterized pathway involving neuronal caspase-1 activation. Strikingly, treatment with the ONOO scavenger uric acid (UA) reversed the reduced action potential (AP) frequency of AgRP neurons and increased the AP frequency of POMC neurons induced by SIN1, a donor of ONOO, in the Arc, as determined by whole-cell patch-clamp electrophysiological recording. Consistent with these findings, UA treatment effectively alleviated cisplatin-induced dysfunction of neuronal oscillations and neuronal theta-gamma phase-amplitude coupling in the Arc of mice. Taken together, these results suggest, for the first time, that targeting the overproduction of endothelial ONOO can regulate cisplatin-induced neurotoxicity through neuronal caspase-1, and thereby serve as a potential therapeutic approach to alleviate chemotherapy-induced anorexia and weight loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495174 | PMC |
http://dx.doi.org/10.1016/j.redox.2021.102147 | DOI Listing |
Biomedicines
November 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.
View Article and Find Full Text PDFCurr Med Chem
January 2025
3rd Department of Cardiology, General Hospital of Thoracic Diseases 'Sotiria', National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
Arterial hypertension is a silent and progressive disease with deleterious vascular implications on all target organs, including the heart, the brain, the kidneys, and the eyes. Oxidative stress, defined as the overproduction of Reactive Oxygen Species (ROS) over antioxidants, is capable of deteriorating not only the normal endothelial but also the cellular function with further cardiovascular implications. Xanthine oxidase activity, NADPH oxidase overexpression, and ROS production lead to hypertension and high arterial tone, culminating in end-organ damage.
View Article and Find Full Text PDFRedox Biol
February 2025
Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. Electronic address:
Tetrahydrobiopterin (BH4) deficiency is caused by genetic abnormalities that impair its biosynthesis and recycling, which trigger neurochemical, metabolic, and redox imbalances. Low BH4 levels are also associated with hypoxia, reperfusion reoxygenation, endothelial dysfunction, and other conditions that are not genetically determined. The exact cause of changes in BH4 in nongenetic disorders is not entirely understood, but a role for oxidant species has been implicated.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Australia.
Bioelectrochemistry
February 2025
Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA. Electronic address:
The impact of four clinically significant genetic variants of endothelial nitric oxide synthase (eNOS) polymorphisms on the concentrations of nitric oxide [NO] and peroxynitrite [ONOO] has been given scant consideration. This study utilized a [NO]/[ONOO] ratio to determine the extent of endothelial dysfunction caused by these variations in the eNOS gene. The single nucleotide polymorphisms (T-786C, C-665T, and Glu298Asp) and a variable number of tandem repeats (intron 4 a/b/c) were genotyped in human umbilical vein endothelial cells (HUVEC), using sanger sequencing and DNA electrophoresis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!