A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selenoprotein K deficiency-induced apoptosis: A role for calpain and the ERS pathway. | LitMetric

Selenoprotein K deficiency-induced apoptosis: A role for calpain and the ERS pathway.

Redox Biol

Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China. Electronic address:

Published: November 2021

Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident protein, is regulated by dietary selenium and expressed at a relatively high level in neurons. SELENOK has been shown to participate in oxidation resistance, calcium (Ca) flux regulation, and the ER-associated degradation (ERAD) pathway in immune cells. However, its role in neurons has not been elucidated. Here, we demonstrated that SELENOK gene knockout markedly enhanced ER stress (ERS) and increased apoptosis in neurons. SELENOK gene knockout elicited intracellular Ca flux and activated the m-calpain/caspase-12 cascade, thus inducing neuronal apoptosis both in vivo and in vitro. In addition, SELENOK knockout significantly reduced cognitive ability and increased anxiety in 7-month-old mice. Our findings reveal an unexpected role of SELENOK in regulating ERS-induced neuronal apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495175PMC
http://dx.doi.org/10.1016/j.redox.2021.102154DOI Listing

Publication Analysis

Top Keywords

neurons selenok
8
selenok gene
8
gene knockout
8
neuronal apoptosis
8
selenok
6
selenoprotein deficiency-induced
4
apoptosis
4
deficiency-induced apoptosis
4
apoptosis role
4
role calpain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!