The frying process is an excellent way to obtain food with desirable sensory. However, some harmful substances, such as aldehydes and monoepoxy oleic acids, could also be produced. This study mainly explores the inhibition of polyphenols from the Camellia oleifera seed cake extract (CSCE) on the formation of polar compounds, core aldehydes, and monoepoxy oleic acids during deep-fat frying. The results showed that the CSCE could significantly decrease peroxide, p-anisidine, total polar, and monoepoxy oleic acids compared with other groups. In addition, the CSCE could significantly inhibit the generation of oxidized triacylglycerol polymer (TGP) and oxidized triacylglycerol (ox-TG), indicating its anti-polymerization activity. The total amount of core aldehydes and glycerol ester core aldehydes (9-oxo) in soybean oil was significantly reduced. Furthermore, CSCE had a better inhibitory effect on monoepoxy fatty acids than TBHQ. Our results might be helpful to provide a basis for the search for new natural antioxidants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.131143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!