Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sludge pyrolysis carbonization has shown potential to convert sludge biomass into multifunctional carbon materials. However, ecological risks of dissolved organic matters (DOMs) with obscure molecular characteristics retaining in sludge-based carbons (SBCs) have received little attention. This study investigated the impact of pyrolysis temperatures on the molecular conversion and biotoxicity effects of DOMs in SBCs. The results revealed that DOMs in SBCs were mainly derived from depolymerization of biopolymers and the polycondensation and cyclization of small intermediate molecules, which mainly consisted of aromatic CHON compounds with 1-3 N atoms, featuring high unsaturation and molecular weights. High-temperature pyrolysis (500-800 °C) promoted the decomposition and ring-opening of aromatic CHON compounds into saturated aliphatic CHO compounds with 2-4 O atoms in SBCs. Noteworthily, SBCs-derived DOMs showed relatively strong biotoxicity on the growth and development of wild-type zebrafish embryos, pakchoi seeds, and Vibrio qinghaiensis Q67, which was significantly related to aromatic amines, phenols, and heterocyclic-N compounds in DOMs of SBCs. SBCs-derived DOMs were mainly straight-chain fatty acids and showed no observable acute biotoxicity. This study highlights the negative impact of DOMs in SBCs on the ecological environment, and provides the theoretical basis for controlling toxic byproducts in sludge pyrolysis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!