White matter alterations and cognitive outcomes in children born very low birth weight.

Neuroimage Clin

Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Psychology, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Medical Imaging, University of Toronto, Ontario, Canada; Paediatrics, University of Toronto, Toronto, Ontario, Canada.

Published: January 2022

Background: Very low birth weight (VLBW) infants are at risk for disrupted white matter maturation, yet little is known about the contributing factors, particularly at preschool-age when cognitive difficulties begin to emerge. We examined white matter microstructure in five-year-old VLBW and full-term (FT) children, and its association with cognitive outcomes and birth weight.

Methods: Multi-shell diffusion and MR images were obtained for 41 VLBW (mean birth weight: 1028.6 ± 256.8 g) and 26 FT (3295.4 ± 493.9 g) children. Fractional anisotropy (FA), radial diffusivity (RD), neurite orientation dispersion index (ODI) and density index (NDI) were estimated using diffusion tensor and neurite orientation dispersion and density imaging models. Between-group analyses used a general linear model with group and sex as explanatory variables. Within-group associations between white matter microstructure, cognitive outcomes and birth weight were also investigated.

Results: VLBW compared to FT children showed lower FA and NDI across widespread white matter regions. Smaller clusters of atypical ODI were also found in VLBW children. Within-group analyses in FT children revealed that lower RD and higher NDI were associated with vocabulary acquisition and working memory. In VLBW children, higher FA and NDI, and lower RD and ODI, were associated with improved processing speed. In both groups, FA was positively associated with birth weight.

Conclusions: Our findings demonstrate white matter alterations in young VLBW children, including widespread reductions in axon density that may reflect sustained myelination disruptions. The associations with cognitive outcomes may also highlight which of the VLBW children are at higher risk for later cognitive difficulties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496319PMC
http://dx.doi.org/10.1016/j.nicl.2021.102843DOI Listing

Publication Analysis

Top Keywords

white matter
24
cognitive outcomes
16
birth weight
16
vlbw children
16
children
9
matter alterations
8
low birth
8
vlbw
8
cognitive difficulties
8
matter microstructure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!