Latex agglutination analysis by novel ultrasound scattering techniques.

Ultrasonics

Department of Macromolecular Science and Engineering, Graduate School of Science & Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. Electronic address:

Published: February 2022

The latex agglutination test is employed to visualize antigen-antibody reactions through the aggregation of antibody-coated particles in the presence of an antigen. In the present study, we developed an ultrasound scattering technique to detect latex agglutination in an optically turbid media. However, the ultrasonic technique had less sensitivity to the dilute particle suspension than the optical techniques because of its wavelength. Therefore, we applied a time-correlation approach to detect small amounts of these aggregates using a sophisticated noise correction algorithm in the frequency domain. The lowest concentration of avidin used to detect aggregations of the biotin-coated particle using the ultrasound scattering technique was found to be 0.625 μg/ml. Furthermore, since the density differences between the particle and liquid were larger for silica suspensions than for polystyrene (PS) suspensions, a larger signal was proposed to be expected from silica suspensions. Nevertheless, it was found that latex agglutinations with the PS particle were more sensitive than those with the silica particles. The dynamic ultrasound scattering analysis along the sedimentation direction also supported the presence of strongly scattered intensity components of the PS aggregates, which is proposed to be due to the resonance scattering from PS spherical particles. Therefore, this technique can be employed to enhance scattering signals from particles for application in the agglutination test using ultrasound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2021.106581DOI Listing

Publication Analysis

Top Keywords

ultrasound scattering
16
latex agglutination
12
agglutination test
8
scattering technique
8
silica suspensions
8
scattering
6
ultrasound
5
latex
4
agglutination analysis
4
analysis novel
4

Similar Publications

Anti-Scattering Perovskite Scintillator Arrays for High-Resolution Computed Tomography Imaging.

Adv Mater

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Computed tomography (CT) imaging has emerge as an effective medical diagnostic technique due to its rapid and 3D imaging capabilities, often employing indirect imaging methods through scintillator materials. Arraying scintillators that can confine light scattering to enable high-resolution CT imaging remains an area of ongoing exploration for emerging perovskite scintillators. Here an anti-scattering cesium lead bromide (CsPbBr) scintillator array embedded within a polyurethane acrylate matrix for CT imaging using a cost-effective solution-processed method is reported.

View Article and Find Full Text PDF

Significance: Accurate values of skin optical properties are essential for developing reliable computational models and optimizing optical imaging systems. However, published values show a large variability due to a variety of factors, including differences in sample collection, preparation, experimental methodology, and analysis.

Aim: We aim to explore the influence of storage conditions on the optical properties of the excised skin from 400 to 1100 nm.

View Article and Find Full Text PDF

Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique.

View Article and Find Full Text PDF

Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.

View Article and Find Full Text PDF

Background: Intraoperative imaging is critical for achieving precise cancer resection. Among available techniques, Raman spectral imaging emerges as a promising modality due to its high spatial resolution and signal stability. However, its clinical application for in vivo imaging is limited by the inherently weak Raman scattering signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!