Arsenic contamination of ground water is a worldwide issue, causing a number of ailments in humans. As an engineered and integrated solution, a hybrid vertical subsurface flow constructed wetland (VSSF-CW) amended with BCXZM composite (Bacillus XZM immobilized on rice husk biochar), was found effective for the bioremediation of arsenic contaminated water. Biological filter was prepared by amending top 3 cm of VSSF-CW bed with BCXZM. This filter scavenged ∼64% of total arsenic and removal efficiency of ∼95% was achieved by amended and planted (As + P + B) VSSF-CW, while non-amended (As + P) VSSF-CW showed a removal efficiency of ∼55%. The unplanted and amended (As + B) VSSF-CW showed a removal efficiency of ∼70%. The symbiotic association of Bacillus XZM, confirmed by SEM micrographs, significantly (p ≤ 0.05) reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation in Typha latifolia, hence, increasing the plant growth (2 folds). An increase in the indole acetic acid (IAA) and arsenic accumulation in plant was also observed in As + P + B system. The removal efficiency of the system was compromised after 4th consecutive cycle and 48 h was observed as optimum retention time. The FTIR-spectra showed the involvement of -N-H bond, carboxylic acids, -CH stretching of -CH and -CH carbonyl groups, -C-H, C-O-P and C-O-C, sulphur/thiol and phosphate functional groups in the bio-sorption of arsenic by BCXZM filter. Our study is a first reported on the simultaneous phytoextraction and biosorption of arsenic in a hybrid VSSF-CW. It is proposed that BCXZM can be applied effectively in CWs for the bioremediation of arsenic contaminated water on large scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118269 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA.
In tissues, neutrophils neutralize Candida albicans through phagocytosis and delay C. albicans hyphae growth by deploying neutrophil extracellular traps (NETs). However, in the bloodstream, the dynamic interactions between NETs and C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.
Reducing the energy and carbon intensity of the conventional chemical processing industry can be achieved by electrochemically transforming natural gases into higher-value chemicals with higher efficiency and near-zero emissions. In this work, the direct conversion of methane to aromatics and electricity has been achieved in a protonic ceramic electrocatalytic membrane reactor through the integration of a proton-conducting membrane assembly and a trimetallic Pt-Cu/Mo/ZSM-5 catalyst for the nonoxidative methane dehydro-aromatization reaction. In this integrated system, a remarkable 15.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NO) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NO removal, green purification and value-added conversion of NO under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NO purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities.
View Article and Find Full Text PDFJ Prosthodont
January 2025
ITI Scholarship Center, Center for Implant, Esthetic and Innovative Dentistry, Indiana University School of Dentistry, Indianapolis, Indiana, USA.
Recent focus has shifted toward refining the soft tissue emergence profile to enhance aesthetics, support peri-implant health, and ensure long-term success. Traditionally, titanium stock healing abutments or chairside-customized abutments were used to shape peri-implant tissues and develop the emergence profile for implant-supported prostheses. However, advancements in digital dentistry now allow for more precise customization and increased treatment efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!