Microplastic particles are a global problem, which has been widely found in marine and terrestrial environments. However, microplastic pollution in caves and karst aquifers is still poorly studied. To improve the current knowledge of microplastic pollution, we investigated the sediments of a show cave in Italy. We developed a methodology based on a cave-adapted version of the methods used in several studies to detect microplastics from sediments of different environments and with various laboratory tests. The microplastics were extracted from sediments via density separation and subjected to organic matter removal. Filters were observed with and without UV light under a microscope, before and after organic matter removal, and the microplastics were characterised according to shape, colour, and size, with visual identification. About 55% of the fibres observed under the microscope on filters were removed via organic matter removal. An average of 4390 items/kg dry weight was calculated for the touristic zone and 1600 items/kg dry weight for the speleological/research section. Fibre (84.9%) was the most abundant shape, and most microplastics were smaller than 1 mm, accounting for 85.4%, of which 58.4% were shorter than 0.5 mm. The highest microplastic abundance was fluorescent under UV light (87.7%); however, 12.3% of the microplastics observed on filters were not fluorescent. Most fluorescent fibres were transparent (84%), whereas blue (46.1%) and black (22.4%) fibres were more common for the non-fluorescent ones. Our results highlight the presence of microplastics in show caves, and we provide a valid non-invasive and non-expensive analytical technique for the preparation and isolation of microplastics from cave sediments, giving useful information for evaluating the environmental risks posed by microplastics in show caves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.118261 | DOI Listing |
Environ Pollut
January 2025
Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA. Electronic address:
Plastics play a crucial role in modern life, but improper use and disposal have resulted in microplastics becoming widespread in the environment, raising significant concerns about both the environment and human health. Extensive research has explored the transformation mechanisms, bioaccumulation, ecological impacts, and health risks associated with microplastics. The present review first analyzes the migration, transformation, and degradation pathways of microplastics on a global scale, and then synthesizes current knowledge on the types, sources, and migration pathways of microplastics in soil, atmosphere, and aquatic environments, emphasizing transformation mechanisms like photo-aging and microbial degradation, and detailing their ecological and human health impacts.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Public Health, China Medical University, Taichung City, Taiwan. Electronic address:
Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.
View Article and Find Full Text PDFEnviron Res
January 2025
Southern California Coastal Water Research Project, Costa Mesa, CA, 92626.
The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, 5000 Iloilo City, Philippines.
The plastic revolution's contribution to global pollution gives rise to microplastics (MPs), bearing a toll on the marine environment. Knowledge of mangrove exposure to MPs causing adverse effects has yet to be elucidated. Hence, the physiological responses of R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!