Flowback water from shale gas operations contains formation-derived compounds, including trace metals, radionuclides, and organics. While accidental releases from storage tanks with flowback water are low-probability events if multiple containment barriers are put in place, they cannot be entirely excluded. Here the natural attenuation potential of deep unsaturated zones and groundwater was explored using predictive modelling involving a hypothetical leak from a storage tank. Actual chemical concentrations from flowback water at two shale gas wells with contrasting salinity (12,300 and 105,000 ppm TDS) in the Beetaloo Sub-basin (Northern Territory, Australia) served as input to the one-dimensional HYDRUS model for simulating chemical transport through the unsaturated zone, with groundwater at 50 and 100 m depth, respectively. Subsequent chemical transport in groundwater involved the use of a three-dimensional analytical transport model. For a total of 63 chemicals the long-term attenuation from dilution and dispersion in unsaturated sediments and groundwater was calculated. Predicted environmental concentrations for aquatic receptors were compared with no-effect levels of individual chemicals to derive risk quotients (RQ) and identify chemicals of no concern to ecosystem health (i.e. RQ <1). Except for salinity and radium-228 in one of the two wells, RQ < 1 for all other chemicals. The initial approach considered testing of toxicity to individual chemicals only. When direct toxicity assessments (DTAs) were used to account for effects of chemical mixtures, the required DTA-derived safe dilution factor for 95% species protection was 1.8 to 2.5 times higher than the dilution factor accounting for dispersion and dilution only. Accounting for biodegradation, sorption and radioactive decay decreased chemical concentrations in unsaturated sediments to safe levels using the DTA for all chemicals. The study highlighted the importance of incorporating DTA in chemical risk assessments involving complex chemical mixtures. Improved understanding of fate and transport of flowback chemicals will help effectively manage water-quality risks associated with shale gas extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150686DOI Listing

Publication Analysis

Top Keywords

flowback water
12
water shale
8
shale gas
8
chemical transport
8
modelling attenuation
4
flowback
4
attenuation flowback
4
chemicals
4
flowback chemicals
4
chemicals soil-groundwater
4

Similar Publications

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

Review of the environmental and health risks of hydraulic fracturing fluids.

Heliyon

January 2025

Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Lebanon.

The composition of hydraulic fracturing (HF) fluid poses risks to human health and the environment by impacting drinking water sources. Fracturing fluid recovery rate is highly variable, and the fact that a high percentage of the injected HF fluid is not produced back to the surface in some areas raises questions about its fate and possible migration into aquifers. In this paper, the composition of the HF fluid and related toxicity are described, along with insights about the environmental impact linked with HF fluid, synthesized spill data, main factors affecting the flow-back ratio, and induced seismicity related to HF activities.

View Article and Find Full Text PDF

Dissemination mechanisms of unique antibiotic resistance genes from flowback water to soil revealed by combined Illumina and Nanopore sequencing.

Water Res

December 2024

Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China. Electronic address:

As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear.

View Article and Find Full Text PDF

Identification and hazard prioritization of hydrophobic organic chemicals in flowback and produced water particles: Implications for water management.

Water Res

January 2025

School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:

Hydraulic fracturing flowback and produced water (HF-FPW) has raised significant concerns owing to its potential impact on aquatic organisms and human health. Understanding the chemical composition of HF-FPW is crucial for developing appropriate management and remediation strategies. Herein, we performed nontarget screening on hydrophobic organic chemicals in the particulate phase of FPW (P-FPW) using gas chromatography-Orbitrap mass spectrometry coupled with cheminformatic analysis.

View Article and Find Full Text PDF

The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant surface. In this study, a lightweight amphiphobic proppant (LWAP) was prepared by coating a lightweight ceramic proppant (LWCP) with phenolic resin, epoxy resin, polytetrafluoroethylene (PTFE), and trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane (TMHFS) using a layer-by-layer method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!