UV and (V)UV irradiation of sitagliptin in ultrapure water and WWTP effluent: Kinetics, transformation products and degradation pathway.

Chemosphere

Laboratory for Environmental Chemistry and Bioanalytics, Institute of Chemistry, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary; Cooperative Research Center for Environmental Sciences, ELTE - Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary; Environmental Chemistry Research Group, Institute of Aquatic Ecology, Centre for Ecological Research, H-1113, Budapest, Karolina út 29-31, Hungary. Electronic address:

Published: February 2022

Sitagliptin (SITA) is an antidiabetic drug consumed worldwide in high quantities. Because of the low removal rate of this compound in conventional wastewater treatment plants (WWTPs), it enters receiving surface waters with the discharged WWTP effluents. SITA can be detected up to μg/L concentration in rivers. In this study, UV (254 nm) and (V)UV (185 nm + 254 nm) irradiation was applied in laboratory scale to degrade SITA. The effect of three parameters was evaluated on the degradation rate, namely i) the efficiency in UV and (V)UV irradiation, ii) the presence or absence of dissolved oxygen, iii) the matrix effect of WWTP effluent. Degradation rate of SITA was largely increased by (V)UV irradiation, and decreased in WWTP effluent as expected. The presence of dissolved oxygen increased the degradation rate only in UV experiments and did not have a considerable effect in (V)UV experiments. In total, 14 transformation products (TPs) were identified (twelve new); their structures were proposed based on high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy analyses. The most characteristic reaction steps of the degradation of SITA involved nucleophilic aromatic photosubstitution whereas hydroxide ions acted as attacking nucleophiles and replaced F atoms of the phenyl moiety by hydroxide groups, in agreement with the increase in photolysis rate with increasing pH. The photochemical degradation pathway of SITA was also interpreted. Kinetic profiles revealed TP 421, TP 208 and TP 192 to be the most recalcitrant TPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132393DOI Listing

Publication Analysis

Top Keywords

vuv irradiation
12
wwtp effluent
12
degradation rate
12
transformation products
8
degradation pathway
8
dissolved oxygen
8
degradation
6
sita
6
vuv
5
rate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!