Removal of uranium from contaminated groundwater using monorhamnolipids and ion flotation.

J Environ Manage

Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA. Electronic address:

Published: January 2022

Mining of uranium for defense-related purposes has left a substantial legacy of pollution that threatens human and environmental health. Contaminated waters in the arid southwest are of particular concern, as water resource demand and water scarcity issues become more pronounced. The development of remediation strategies to treat uranium impacted waters will become increasingly vital to meet future water needs. Ion flotation is one technology with the potential to address legacy uranium contamination. The green biosurfactant rhamnolipid has been shown to bind uranium and act as an effective collector in ion flotation. In this study, uranium contaminated groundwater (∼440 μg L U) from the Monument Valley processing site in northeast Arizona was used as a model solution to test the uranium removal efficacy of ion flotation with biosynthetic (bio-mRL) and three synthetic monorhamnolipids with varying hydrophobic chain lengths: Rha-C10-C10, Rha-C12-C12, and Rha-C14-C14. At the groundwater's native pH 8, and at an adjusted pH 7, no uranium was removed from solution by any collector. However, at pH 6.5 bio-mRL and Rha-C10-C10 removed 239.2 μg L and 242.4 μg L of uranium, respectively. By further decreasing the pH to 5.5, bio-mRL was able to reduce the uranium concentration to near or below the Environmental Protection Agency maximum contaminant level of 30 μg L. For the Rha-C12-C12 and Rha-C14-C14 collector ligands, decreasing the pH to 7 or below reduced the foam stability and quantity, such that these collectors were not suitable for treating this groundwater. To contextualize the results, a geochemical analysis of the groundwater was conducted, and a consideration of uranium speciation is described. Based on this study, the efficacy of monorhamnolipid-based ion flotation in real world groundwater has been demonstrated with suitable solution conditions and collectors identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579952PMC
http://dx.doi.org/10.1016/j.jenvman.2021.113835DOI Listing

Publication Analysis

Top Keywords

ion flotation
20
uranium
10
uranium contaminated
8
contaminated groundwater
8
rha-c12-c12 rha-c14-c14
8
groundwater
5
ion
5
flotation
5
removal uranium
4
groundwater monorhamnolipids
4

Similar Publications

The sulfidization-xanthate flotation process has been used commercially with some success in recovering azurite, but it remains unsatisfactory in terms of the environmental impact and flotation index. To remediate these deficiencies, this study evaluated the flotation performance of sodium trithiocarbonate (NaCS) as a green sulfidizing agent for azurite. Flotation test results demonstrated that NaCS has the same efficacy as sodium sulfide but markedly superior activation performance.

View Article and Find Full Text PDF

Ester collectors have rapidly developed into the main flotation collectors for copper sulfide minerals since they were developed. In this study, the collecting performance of four collectors, O-isopropyl-N-ethyl thionocarbamate ester (IPETC), 3-pentyl xanthate acrylate ester (PXA), O-isobutyl-N-allyl-thionocarbamate (IBALTC), and O-isobutyl-N-isobutoxycarbonyl-thionocarbamate (IBIBCTC), was investigated through microflotation tests, microcalorimetric measurements, and quantum chemical calculations. The results of the microflotation tests show that IBALTC and IPETC have stronger collecting abilities than IBIBCTC and PXA; the order of collecting ability is IBALTC > IPETC > IBIBCTC > PXA.

View Article and Find Full Text PDF

The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct flotation of smithsonite. Micro-flotation studies showed that at pH 9, ABN exhibited better adsorption on smithsonite, achieving a recovery rate of 80.

View Article and Find Full Text PDF

Impact of Water Purity and Oxygen Content in Gas Phase on Effectiveness of Surface Cleaning with Microbubbles.

Materials (Basel)

December 2024

Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland.

Cleaning of surfaces without complex cleaning agents is an important subject, especially in food, pharmaceutical, and biomedical applications. The subject of microbubble and nanobubble cleaning is considered one of the most promising ways to intensify this process. In this work, we check whether and how the purity of water used for microbubble generation, as well as the gas used, affects the effectiveness of cleaning stainless-steel surfaces.

View Article and Find Full Text PDF

Detecting ion-specific forces between fatty acid colloids and salt crystals in brines using colloidal probe AFM.

J Colloid Interface Sci

April 2025

School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:

Hypothesis: Ion-specific forces in concentrated salt solutions play critical roles in many applications, ranging from biology to engineering, e.g., separating water-soluble minerals in brines by flotation using air bubbles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!