A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decorating UiO-66-NH crystals on recyclable fiber bearing polyamine and amidoxime bifunctional groups via cross-linking method with good stability for highly efficient capture of U(VI) from aqueous solution. | LitMetric

Decorating UiO-66-NH crystals on recyclable fiber bearing polyamine and amidoxime bifunctional groups via cross-linking method with good stability for highly efficient capture of U(VI) from aqueous solution.

J Hazard Mater

Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China. Electronic address:

Published: February 2022

Although polyacrylonitrile fiber (PANF) and metal-organic frameworks (MOFs) have been extensively investigated to remove U(VI) from water, their practical applications are seriously hindered by the relatively low stability of PANF in acidic solution and great difficulty of separating MOFs nanoparticles from solution, beside that, little attention is paid to the fabrication of MOFs and PANF composite materials (MPCMs) with excellent adsorption capacity for U(VI). Herein, we report the synthesis of novel MPCMs by decorating different concentrations of UiO-66-NH2 crystals onto polyamine and amidoxime groups functionalized PANF (PA-AO-PANF) through cross-linking method for U(VI) extraction. The characterization results reveal that the combination of PA-AO-PANF and UiO-66-NH2 crystals endows MPCMs with excellent separation ability, large surface area, good stability and plentiful surface functional groups, which contributes to good selectivity and enhanced adsorption performance. Consequently, the obtained UN-PA-AO-PANF-2 shows the maximum uptake capacity of 441.8 mg/g and equilibrium uptake time of 30 min towards U(VI). Besides, the U(VI) uptake ability and structure of UN-PA-AO-PANF-2 are well preserved after ten adsorption-desorption cycles. With these outstanding properties, the adsorbent has great potential for the capture of U(VI) from aqueous solutions. Importantly, this work provides a cost-effective and efficient way to construct extremely stable MPCMs hybrid fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127273DOI Listing

Publication Analysis

Top Keywords

polyamine amidoxime
8
cross-linking method
8
good stability
8
capture uvi
8
uvi aqueous
8
mpcms excellent
8
uio-66-nh2 crystals
8
uvi
7
decorating uio-66-nh
4
uio-66-nh crystals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!