Hydrated electrons (eE= -2.9 V) generated by advanced reduction processes (ARPs) have been proved to be a promising approach to eliminate various per- and polyfluoroalkyl substances (PFASs) in water. In this study, the decomposition of perfluorooctanoic acid (PFOA) in a complex water matrix by e generated from the UV/sulfite process was investigated. The effect of pH (9-12) and co-existing compounds (chloride, nitrate, phosphate, carbonate and humic acid) on PFOA degradation efficiency was studied. In addition, the intermediates and possible degradation pathways were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The results showed that the concentration of PFOA was below the detection limit (10 μg/L) after 1 h (conditions: C 10 mg/L, initial pH = 10, sulfite 10 mM) while 89% defluorination was achieved after 24 h. Using a higher initial pH (pH = 12) greatly enhanced the PFOA degradation as 100% degradation and 98% defluorination were achieved after 24 h. The presence of carbonate (> 5 mM), nitrate (> 2 mM) and humic acid (> 25 mg/L) showed a significant negative effect on PFOA degradation via a UV blocking effect or quenching of hydrated electrons while the presence of chloride and phosphate had a smaller effect on PFOA degradation. Even at extremely high concentrations of chloride (1.709 M, pH = 11.25), the defluorination ratio reached 97% after 24 h of reaction time. During the process, short-chain perfluorinated carboxylic acids (PFCAs, C < 7) and hydrogen substituted compounds were detected, which implies that chain-shortening and H/F change reactions had occurred. Moreover, this confirmed the generation of sulfonated and unsaturated intermediates during the process, which disclosed valuable new mechanistic insights into PFOA degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!