To date, there is no functional characterization of EmGGPPS (from Elizabethkingia meningoseptica sp.F2) as enzymes catalyzing GGPP. In this research, maltose-binding protein (MBP), disulfide bond A (DbsA), disulfide bond C (DbsC), and two other small protein tags, GB1 (Protein G B1 domain) and ZZ (Protein A IgG ZZ repeat domain), were used as fusion partners to construct an EmGGPPS fusion expression system. The results indicated that the expression of MBP-EmGGPPS was higher than that of the other four fusion proteins in E. coli BL21 (DE3). Additionally, using EmGGPPS as a catalyst for the production of GGPP was verified using a color complementation assay in Escherichia coli. In parallel with it, the enzyme activity experiment in vitro showed that the EmGGPPS protein could produce GGPP, GPP and FPP. Finally, we successfully demonstrated MK-4 production in engineered E. coli by overexpression of EmGGPPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2021.105986 | DOI Listing |
ACS Appl Bio Mater
January 2025
Physics Department, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
This study investigates the functionalization of gold-coated magnetoelastic sensors with thionine molecules, focusing on resonance frequency shifts. The functionalization process was characterized by using Raman spectroscopy and analyzed via scanning electron microscopy and atomic force microscopy, revealing the progressive formation of molecular clusters over time. Our results demonstrate that longer functionalization time leads to saturation of surface coverage and cluster formation, impacting the sensor's resonance frequency shifts.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland.
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Tulane University, Department of Physics and Engineering Physics, New Orleans, Louisiana 70118, USA.
The coupling between defects and extended critical degrees of freedom gives rise to the intriguing theory known as defect conformal field theory (CFT). In this work, we introduce a novel family of boundary and interface CFTs by coupling N Majorana chains with SYK_{q} interactions at the defect. Our analysis reveals that the interaction with q=2 constitutes a new marginal defect.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.
The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.
View Article and Find Full Text PDFJ Vis Exp
January 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University;
The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!