In the manufacturing of pharmaceutical Oral Solid Dosage (OSD) forms, Particle Size Distribution (PSD) and Tensile Strength (TS) are common in-process tests that are controlled in order to achieve the quality targets of the end-product. The Quality by Design (QbD) concept elaborates process understanding and sufficient controls. However, for older pharmaceutical products upscaled to commercial phase with Quality by Testing (QbT) approach, the knowhow of the product-specific critical parameters is often limited. In this study, two predictive machine learning (ML) models were used for a commercial tablet product, for which historical data of raw materials, production, in-process controls and condition monitoring were available. With the aforementioned data, the aim was to predict the PSD and the TS that indicate the product quality. The feature importance was used to evaluate the parameter importance for the PSD and the TS. Partial dependence, in turn, was used to estimate the parameter impact on the predicted TS. The study illustrates the capability of the ML models to bring additional value for commercial products through the enhanced product-related knowhow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.121146DOI Listing

Publication Analysis

Top Keywords

machine learning
8
particle size
8
size distribution
8
tensile strength
8
learning prediction
4
prediction granule
4
granule particle
4
distribution tablet
4
tablet tensile
4
commercial
4

Similar Publications

Network-Based Identification of Key Toxic Compounds in Airborne Chemical Exposome.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.

View Article and Find Full Text PDF

A digital twin is a virtual model of a real-world system that updates in real-time. In healthcare, digital twins are gaining popularity for monitoring activities like diet, physical activity, and sleep. However, their application in predicting serious conditions such as heart attacks, brain strokes and cancers remains under investigation, with current research showing limited accuracy in such predictions.

View Article and Find Full Text PDF

Clinical utility of tumor-infiltrating lymphocyte evaluation by two different methods in breast cancer patients treated with neoadjuvant chemotherapy.

Breast Cancer

January 2025

Division of Breast and Endocrine Surgery, Department of Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.

Purpose: The aim of this study was to examine the clinical utility of tumor-infiltrating lymphocytes (TILs) evaluated by "average" and "hot-spot" methods in breast cancer patients.

Methods: We examined 367 breast cancer patients without neoadjuvant chemotherapy (NAC) by average and hot-spot methods to determine the consistency of TIL scores between biopsy and surgical specimens. TIL scores before NAC were also compared with the pathological complete response (pCR) rate and clinical outcomes in 144 breast cancer patients that received NAC.

View Article and Find Full Text PDF

End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.

View Article and Find Full Text PDF

The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!