Epigenetic-sensitive mechanisms, mainly DNA methylation, mirror the relationship between environmental and genetic risk factors able to affect the sensitiveness to development of obesity and its comorbidities. Bariatric and metabolic surgery may reduce obesity-related cardiovascular risk through tissue-specific DNA methylation changes. Among the most robust results, differential promoter methylation of ACACA, CETP, CTGF, S100A8, and S100A9 genes correlated significantly with the levels of mRNA before and after gastric bypass surgery (RYGB) in obese women. Additionally, promoter hypermethylation of NFKB1 gene was significantly associated with reduced blood pressure in obese patients after RYGB suggesting useful non-invasive biomarkers. Of note, sperm-related DNA methylation signatures of genes regulating the central control of appetite, such as MC4R, BDNF, NPY, and CR1, and other genes including FTO, CHST8, and SH2B1 were different in obese patients as compared to non-obese subjects and patients who lost weight after RYGB surgery. Importantly, transgenerational studies provided relevant evidence of the potential effect of bariatric and metabolic surgery on DNA methylation. For example, peripheral blood biospecimens isolated from siblings born from obese mothers before bariatric surgery showed different methylation signatures in the insulin receptor and leptin signaling axis as compared to siblings born from post-obese mothers who underwent surgery. This evidence suggests that bariatric and metabolic surgery of mothers may affect the epigenetic profiles of the offspring with potential implication for primary prevention of severe obesity. We update on tissue-specific epigenetic signatures as potential mechanisms underlying the restoration of metabolic health after surgery suggesting useful predictive biomarkers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995275 | PMC |
http://dx.doi.org/10.1007/s13304-021-01162-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!