Ameloblastoma is a neoplasm arising in the craniofacial skeleton. Proliferating odontogenic epithelial cells comprise this benign, yet locally invasive tumor, often causing severe disfiguration. High recurrence rate entails ablative surgical resection, which is the current standard of care, resulting in subsequent critical size osteocutaneous defects. The high incidence of BRAF mutations in ameloblastoma, most notably the BRAF V600E mutation, enabled the use of BRAF inhibiting agent in a neoadjuvant setting. In this investigator-initiated, open-label study, three consecutive pediatric patients, with confirmed BRAF V600E ameloblastoma deemed marginally resectable, were treated with BRAF inhibiting agents, prior to undergoing surgery. The use of upfront BRAF inhibitor treatment resulted in substantial tumor regression, allowing for non-mutilating complete surgical removal, ad integrum bone regeneration and organ preservation. All patients showed a marked radiologic and clinical response to medical treatment, enabling successful conservative surgery. Microscopically, all patients showed evidence of minimal residual tumor with extensive tumor necrosis, fibrosis and generation of new bone. At a median follow-up of 31 months, all patients remained free of disease. Face preservation therapy was achieved in pediatric patients presenting with BRAF V600E mutated ameloblastoma. Our study demonstrates the translational potential of targeted therapy as a neoadjuvant agent. Patient-specific organ preservation therapy should be considered as the new standard of care in ameloblastoma, mainly for children and adolescents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.3254DOI Listing

Publication Analysis

Top Keywords

braf v600e
16
braf
8
v600e mutated
8
standard care
8
braf inhibiting
8
pediatric patients
8
organ preservation
8
preservation therapy
8
ameloblastoma
6
patients
5

Similar Publications

Despite significant strides in anti-melanoma therapies, resistance and recurrence remain major challenges. A deeper understanding of the underlying biology of these challenges is necessary for developing more effective treatment paradigms. Melanoma single-cell data were retrieved from the Broad Single Cell Portal (SCP11).

View Article and Find Full Text PDF

Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.

View Article and Find Full Text PDF

Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination.

Sci Rep

January 2025

Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.

Article Synopsis
  • Melanoma is a severe skin cancer that starts from melanocytes, and existing rodent models have limitations in mirroring human conditions.
  • Researchers have created a transgenic pig model that mimics human melanoma using somatic cell nuclear transfer (SCNT), enabling better study of the disease.
  • This new model allows for the investigation of melanoma development and response to treatments, providing a significant resource for advancing cancer research and drug testing.
View Article and Find Full Text PDF

Ameloblastoma is a rare tumor arising from odontogenic cells that is benign, yet locally aggressive. Metastasizing ameloblastoma (METAM) is an ultra-rare ameloblastoma variant in which both primary and secondary tumors have histological features of benign ameloblastoma. This is a case report of a patient who presented with a jaw mass and subsequent lung metastases, later diagnosed as METAM.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a histologically heterogeneous disease with variable clinical outcome. The role the tumour microenvironment (TME) plays in determining tumour progression is complex and not fully understood. To improve our understanding, it is critical that the TME is studied systematically within clinically annotated patient cohorts with long-term follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!