Photochemical degradation of fluoroquinolones ciprofloxacin, enrofloxacin and norfloxacin in aqueous solution under light conditions relevant to surface waters at neutral and alkaline pH was found to proceed readily with half-lives between 0.9 and 2.7 min. The products of photochemical degradation identified by HPLC-MS included defluorinated, hydroxylated, and decarboxylated structures as well as structures with opened cyclic structures. For all of the studied substances, the reaction pathways were influenced significantly by the pH of the reaction system, with more products formed at alkaline pH than at neutral pH: the ratios of products in neutral and alkaline pH were 16/26, 9/19, 15/23 for ciprofloxacin, enrofloxacin, and norfloxacin, respectively. The structures of photoproducts and pathways of photochemical degradation are proposed. The antibacterial activities of photoproduct mixtures tested on E. coli and S. epidermidis were significantly higher in comparison to parental antibiotics in the case of both ciprofloxacin and enrofloxacin with p-values less than 0.0001 in most cases. The effect of the photoproducts was shown to be dependent on the pH value of the original antibiotic solutions before photodegradation: for ciprofloxacin, antibacterial activity against E. coli was more notably pronounced with regard to neutral pH photoproducts, while a less significant, or in one case not significant, effect of pH was observed against S. epidermidis; for norfloxacin, antibacterial activity against both E. coli and S. epidermidis was especially high with regard to alkaline pH photoproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-16182-6DOI Listing

Publication Analysis

Top Keywords

photochemical degradation
12
ciprofloxacin enrofloxacin
12
aqueous solution
8
solution light
8
light conditions
8
conditions relevant
8
relevant surface
8
surface waters
8
photoproduct mixtures
8
enrofloxacin norfloxacin
8

Similar Publications

The factors controlling the catalytic activity in photochemical hydrogen evolution reaction (HER) are studied in detail for two macrocyclic cobalt compounds bearing two N-heterocyclic carbenes and two pyridyl donors ( and , where has a methoxy substituent on each pyridyl ligand). The present study adopts an aqueous photosystem consisting of EDTA, [Ru(bpy)] (bpy = 2,2'-bipyridine), and MV (MV = methylviologen) at pH = 5. Both catalysts are shown to promote HER in a similar efficiency (TON = 12-13 in 6 h), revealing a minor contribution of the electron-donating methoxy substituents.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Photocatalytic production and biological activity of D-arabino-1,4-lactone from D-fructose.

Sci Rep

January 2025

Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-0012, Japan.

Lactones play crucial roles in various fields, such as pharmaceuticals, food, and materials science, due to their unique structures and diverse biological activities. However, certain lactones are difficult to obtain in large quantities from natural sources, necessitating their synthesis to study their properties and potential. In this study, we investigated the photocatalytic conversion of D-fructose, a biomass-derived and naturally abundant sugar, using a TiO photocatalyst under light irradiation in ambient conditions.

View Article and Find Full Text PDF

Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa ( L.

View Article and Find Full Text PDF

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!