Although the behavior of single chains is integral to the foundation of polymer science, a clear and convincing image of single chains in the solid state has still not been captured. For bottlebrush polymers, understanding their conformation in bulk materials is especially important because their extended backbones may explain their self-assembly and mechanical properties that have been attractive for many applications. Here, single-bottlebrush chains are visualized using single-molecule localization microscopy to study their conformations in a polymer melt composed of linear polymers. By observing bottlebrush polymers with different side chain lengths and grafting densities, we observe the relationship between molecular architecture and conformation. We show that bottlebrushes are significantly more rigid in the solid state than previously measured in solution, and the scaling relationships between persistence length and side chain length deviate from those predicted by theory and simulation. We discuss these discrepancies using mechanisms inspired by polymer-grafted nanoparticles, a conceptually similar system. Our work provides a platform for visualizing single-polymer chains in an environment made up entirely of other polymers, which could answer a number of open questions in polymer science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501853 | PMC |
http://dx.doi.org/10.1073/pnas.2109534118 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.
View Article and Find Full Text PDFNanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium. Electronic address:
In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!