Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Ethyl acetate (CHO) and hydrogen (H) are industrially relevant compounds that preferably are produced via sustainable, non-petrochemical production processes. Both compounds are volatile and can be produced by Escherichia coli before. However, relatively low yields for hydrogen are obtained and a mix of by-products renders the sole production of hydrogen by micro-organisms unfeasible. High yields for ethyl acetate have been achieved, but accumulation of formate remained an undesired but inevitable obstacle. Coupling ethyl acetate production to the conversion of formate into H may offer an interesting solution to both drawbacks. Ethyl acetate production requires equimolar amounts of ethanol and acetyl-CoA, which enables a redox neutral fermentation, without the need for production of by-products, other than hydrogen and CO.
Results: We engineered Escherichia coli towards improved conversion of formate into H and CO by inactivating the formate hydrogen lyase repressor (hycA), both uptake hydrogenases (hyaAB, hybBC) and/or overexpressing the hydrogen formate lyase activator (fhlA), in an acetate kinase (ackA) and lactate dehydrogenase (ldhA)-deficient background strain. Initially 10 strains, with increasing number of modifications were evaluated in anaerobic serum bottles with respect to growth. Four reference strains ΔldhAΔackA, ΔldhAΔackA p3-fhlA, ΔldhAΔackAΔhycAΔhyaABΔhybBC and ΔldhAΔackAΔhycAΔhyaABΔhybBC p3-fhlA were further equipped with a plasmid carrying the heterologous ethanol acyltransferase (Eat1) from Wickerhamomyces anomalus and analyzed with respect to their ethyl acetate and hydrogen co-production capacity. Anaerobic co-production of hydrogen and ethyl acetate via Eat1 was achieved in 1.5-L pH-controlled bioreactors. The cultivation was performed at 30 °C in modified M9 medium with glucose as the sole carbon source. Anaerobic conditions and gas stripping were established by supplying N gas.
Conclusions: We showed that the engineered strains co-produced ethyl acetate and hydrogen to yields exceeding 70% of the pathway maximum for ethyl acetate and hydrogen, and propose in situ product removal via gas stripping as efficient technique to isolate the products of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487115 | PMC |
http://dx.doi.org/10.1186/s13068-021-02036-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!