Background: Corynebacterium striatum was confirmed to be an important opportunistic pathogen, which could lead to multiple-site infections and presented high prevalence of multidrug resistance, particularly to quinolone antibiotics. This study aimed to investigate the mechanism underlying resistance to quinolones and the epidemiological features of 410 quinolone-resistant C. striatum clinical strains isolated from three tertiary hospitals in China.
Methods: A total of 410 C. striatum clinical strains were isolated from different clinical samples of patients admitted to three tertiary teaching hospitals in China. Antibiotic susceptibility testing was performed using the microdilution broth method and pulsed-field gel electrophoresis (PFGE) was used for genotyping. Gene sequencing was used to identify possible mutations in the quinolone resistance-determining regions (QRDRs) of gyrA.
Results: In total, 410 C. striatum isolates were sensitive to vancomycin, linezolid, and daptomycin but resistant to ciprofloxacin. Depending on the antibiotic susceptibility testing results of 12 antimicrobial agents, the 410 C. striatum strains were classified into 12 resistant biotypes; of these, the three biotypes R1, R2, and R3 were dominant and accounted for 47.3% (194/410), 21.0% (86/410), and 23.2% (95/410) of the resistant biotypes, respectively. Mutations in the QRDRs ofgyrA were detected in all quinolone-resistant C. striatum isolates, and 97.3% of the isolates (399/410) showed double mutations in codons 87 and 91 of the QRDRs of gyrA. Ser-87 to Phe-87 and Asp-91 to Ala-91 double mutation in C. striatum was the most prevalent and accounted for 72.2% (296/410) of all mutations. Four new mutations in gyrA were identified in this study; these included Ser-87 to Tyr-87 and Asp-91 to Ala-91 (double mutation, 101 isolates); Ser-87 to Val-87 and Asp-91 toGly-91 (double mutation, one isolate); Ser-87 to Val-87 and Asp-91 to Ala-91 (double mutation, one isolate); and Ser-87 to Ile-87 (single mutation, one isolate). The minimum inhibitory concentration of ciprofloxacin for isolates with double (96.5%; 385/399) and single (72.7%; 8/11) mutations was high (≥ 32 µg/mL). Based on the PFGE typing results, 101 randomly selected C. striatum strains were classified into 50 genotypes (T01-T50), including the three multidrug-resistant epidemic clones T02, T06, and T28; these accounted for 14.9% (15/101), 5.9% (6/101), and 11.9% (12/101) of all genotypes, respectively. The multidrug-resistant T02 clone was identified in hospitals A and C and persisted from 2016 to 2018. Three outbreaks resulting from the T02, T06, and T28 clones were observed among intensive care unit (ICU) patients in hospital C between April and May 2019.
Conclusions: Quinolone-resistant C. striatum isolates showed a high prevalence of multidrug resistance. Point mutations in the QRDRs of gyrA conferred quinolone resistance to C. striatum, and several mutations in gyrA were newly found in this study. The great clonal diversity, high-level quinolone resistance and increased prevalence among patients susceptible to C. striatum isolates deserve more attention in the future. Moreover, more thorough investigation of the relationship between quinolone exposure and resistance evolution in C. striatum is necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487134 | PMC |
http://dx.doi.org/10.1186/s12941-021-00477-0 | DOI Listing |
Orphanet J Rare Dis
January 2025
The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.
Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.
Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.
Theor Appl Genet
January 2025
Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes.
View Article and Find Full Text PDFCell
January 2025
European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SA, UK. Electronic address:
Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!