The impact of multiple concurrent factors on the length of the ultrasound pulmonary vertical artifacts as illustrated through the experimental and numerical analysis of simple models.

J Acoust Soc Am

Department of Bioengineering, Fondazione Toscana Gabriele Monasterio, via G. Moruzzi 1, 56124 Pisa, Italy.

Published: September 2021

Nowadays, the diagnostic value of the artefactual information provided by lung ultrasound images is widely recognized by physicians. By carefully observing each individual artifact, an expert physician can derive important information on the distribution of the aerated spaces at the pleural level and, consequently, on the nature of the pulmonary disease. In this paper, a specific visual characteristic of the vertical artifacts (their length) is addressed. The impact of the acoustic properties of the interstitial medium, of the imaging parameters, and of the trap geometry on the length of the vertical artifacts is illustrated through experimental results and through the theoretical analysis of a simple model.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0006413DOI Listing

Publication Analysis

Top Keywords

vertical artifacts
12
artifacts illustrated
8
illustrated experimental
8
analysis simple
8
impact multiple
4
multiple concurrent
4
concurrent factors
4
factors length
4
length ultrasound
4
ultrasound pulmonary
4

Similar Publications

Background: Lung ultrasound (LUS) is increasingly utilized in veterinary medicine to assess pulmonary conditions. However, the characterization of pleural line and subpleural fields using different ultrasound transducers, specifically high-frequency linear ultrasound transducers (HFLUT) and curvilinear transducers (CUT), remains underexplored in canine patients. This study aimed to evaluate inter-rater agreement in the characterization of pleural line and subpleural fields using B- and M-mode ultrasonography in dogs with and without respiratory distress.

View Article and Find Full Text PDF

Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.

View Article and Find Full Text PDF

The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.

View Article and Find Full Text PDF

Diverse tissues in vivo present varying degrees of confinement, constriction, and compression to migrating cells in both homeostasis and disease. The nucleus in particular is subjected to external forces by the physical environment during confined migration. While many systems have been developed to induce nuclear deformation and analyze resultant functional changes, much remains unclear about dynamic volume regulation in confinement due to limitations in time resolution and difficulty imaging in PDMS-based microfluidic chips.

View Article and Find Full Text PDF

A-lines and B-lines are key ultrasound markers that differentiate normal from abnormal lung conditions. A-lines are horizontal lines usually seen in normal aerated lungs, while B-lines are linear vertical artifacts associated with lung abnormalities such as pulmonary edema, infection, and COVID-19, where a higher number of B-lines indicates more severe pathology. This paper aimed to evaluate the effectiveness of a newly released lung ultrasound AI tool (ExoLungAI) in the detection of A-lines and quantification/detection of B-lines to help clinicians in assessing pulmonary conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!