Broad omnidirectional band gaps in a three-dimensional phononic crystal consisting of a face-centered cubic array of spherical air voids connected by cylindrical conduits in solid background are numerically and experimentally demonstrated. With a low material filling fraction of 37.7%, the first bandgap covers 3.1-13.6 kHz frequency range with 126.1% gap-over-midgap ratio. Finite-element method is employed in band structure and numerical transmission analyses. Omnidirectional band gaps are observed in only two-period thick slabs in the 100, 110, and 111 orientations. Experimental transmission characteristics are in good agreement with numerical data. The phononic crystal can be employed in low-frequency sound proofing.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0006043DOI Listing

Publication Analysis

Top Keywords

band gaps
12
phononic crystal
12
broad omnidirectional
8
gaps three-dimensional
8
three-dimensional phononic
8
face-centered cubic
8
omnidirectional band
8
omnidirectional acoustic
4
band
4
acoustic band
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!