We report a new technique for torsional testing of materials under giga-pascal pressures, which uses a shearing module in a large-volume Paris-Edinburgh press in combination with high-resolution fast radiographic x-ray imaging. The measurement of the relative amplitude and phase lag between the cyclic displacement in the sample and a standard material (AlO) provides the effective shear modulus and attenuation factor for the sample. The system can operate in the 0.001-0.01 Hz frequency range and up to 5 GPa and 2000 K although high-temperature measurements may be affected by grain growth and plastic strain. Preliminary experimental results on San Carlos olivine are in quantitative agreement with previously reported Q factors at lower pressure. This cyclic torsional loading method opens new directions to quantify the viscoelastic properties of minerals/rocks at seismic frequencies and under pressure-temperature conditions relevant to the Earth's mantle for a better interpretation of seismological data.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0055549DOI Listing

Publication Analysis

Top Keywords

cyclic torsional
8
torsional loading
8
high-pressure technique
4
technique measurement
4
measurement low
4
low frequency
4
frequency seismic
4
seismic attenuation
4
attenuation cyclic
4
loading report
4

Similar Publications

Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.

View Article and Find Full Text PDF

The paper presents the original results of cyclic testing of materials that are identical in chemical composition but produced by two different technologies: conventional metallurgy and additive manufacturing. For the aluminium alloy AlSi10Mg and the austenitic steel 316L, tensile curves, tension-compression and torsion alternating fatigue curves are experimentally obtained and presented. The experimental results are compared for two fabrication technologies-conventional metallurgy and additive DLMS technology.

View Article and Find Full Text PDF

Objectives: Helical plating is an established method for treating proximal humeral shaft fractures, mitigating the risk of iatrogenic radial nerve damage. However, biomechanical test data on helical plates under physiological load condition is limited. Hence, the aim of this study was to compare the biomechanical performance of helical and straight PHILOS Long plates in AO12C2 fractures using static and cyclic implant system testing.

View Article and Find Full Text PDF

Helical plates used for proximal humeral shaft fracture fixation avoid the radial nerve distally as compared to straight plates. To investigate in a human cadaveric model the biomechanical competence of straight lateral plates versus 45° helical plates used for fixation of proximal comminuted humeral shaft fractures, eight pairs of human cadaveric humeri were instrumented using either a long straight PHILOS plate (Group 1) or a 45° helical plate (Group 2) for treatment of an unstable proximal humeral shaft fracture. All specimens were tested under non-destructive quasi-static loading in axial compression, internal and external rotation, and bending in four directions.

View Article and Find Full Text PDF
Article Synopsis
  • Polyaxial locking systems are commonly utilized in surgeries for challenging cases, such as osteoporotic bones or complicated fractures, but they may decrease stiffness compared to standard designs.
  • A new plate design featuring narrow construction with asymmetric holes and polyaxial capabilities was tested against traditional narrow plates, using three settings with different screw orientations.
  • The results revealed that while polyaxial systems improve surgical placement flexibility, they incur a reduction in torsional strength; however, all groups maintained a strong screw-plate connection even under stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!