Vulvovaginal candidiasis is a public health problem with a high incidence among female patients. Currently, there is an increase in the identification of Candida spp. resistant to current therapy, making it necessary to search for new therapeutic alternatives. The synergistic potential of curcumin with fluconazole is described in the literature. However, due to its high lipophilicity, it is necessary to use drug-delivery systems to adequately explore its potential, among which is the nanostructured lipid carrier. However, to date, there is no validated method of high-performance liquid chromatography for simultaneous determination of fluconazole and curcumin in the literature. Thus, the present work developed a high-performance liquid chromatography method for simultaneous determination of fluconazole and curcumin co-encapsulated in nanostructured lipid carrier which was validated according to the International Conference on Harmonization (Technical Requirements for Registration of Pharmaceuticals for Human Use) - Q2 (R1) and the Food and Drug Administration - Guidance for Bioanalytical Method. The method was applied to determine the encapsulation efficiency and drug-loading of curcumin and fluconazole in nanostructured lipid carriers. The developed method proved to be selective, precise, accurate, and robust for the simultaneous determination of both drugs, enabling the quantification of encapsulation efficiency and drug-loading of curcumin and fluconazole in nanostructured lipid carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202100514DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
20
curcumin fluconazole
16
high-performance liquid
12
liquid chromatography
12
lipid carriers
12
simultaneous determination
12
method simultaneous
8
lipid carrier
8
carrier validated
8
determination fluconazole
8

Similar Publications

Background/objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers.

Methods: Novel TRES-NLC formulations (F1-F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 /), with a surfactant (Tween 80) in two different concentrations (0.

View Article and Find Full Text PDF

Advances in Encapsulating Marine Bioactive Compounds Using Nanostructured Lipid Carriers (NLCs) and Solid Lipid Nanoparticles (SLNs) for Health Applications.

Pharmaceutics

November 2024

UCIBIO (Applied Molecular Biosciences Unit), Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

As life expectancy rises and modern lifestyles improve, there is an increasing focus on health, disease prevention, and enhancing physical appearance. Consumers are more aware of the benefits of natural ingredients in healthcare products while also being mindful of sustainability challenges. Consequently, marine bioactive compounds have gained popularity as ingredients in cosmetics and food supplements due to their diverse beneficial properties.

View Article and Find Full Text PDF

Lipid Nanoparticle Formulations for the Skin Delivery of Cannabidiol.

Pharmaceutics

November 2024

Universidad Nacional de Hurlingham (UNAHUR), Secretaría de Investigación, Laboratorio de Nanosistemas de Aplicación Biotecnológica (LANSAB), Hurlingham 1688, Buenos Aires, Argentina.

The aims of this work were to formulate cannabidiol in different lipid carriers for skin delivery after topical application and to study their stability, interaction with the skin, and antibacterial activity. Solid lipid nanoparticles and nanostructured lipid carriers loaded with cannabidiol were prepared and characterized in terms of their physicochemical properties, colloidal stability, protection of the antioxidant capacity of cannabidiol, as well as their retention over time. Skin penetration was assessed using an in vitro model with human skin.

View Article and Find Full Text PDF

: Pentacyclic triterpenoids are increasingly studied as anticancer agents with many advantages compared to synthetic chemotherapeutics. The aim of this study was to prepare liposomal and nanostructured lipid formulations including a standardized extract of silver birch () outer bark (TTs) and to evaluate their potential as anticancer agents in vitro, using Melanoma B16-F10 and Walker carcinoma cells. : Appropriate solvents were selected for efficient TTs extraction, and original recipes were used to obtain Pegylated liposomes and nanolipid complexes with entrapped TTs, comparative to pure standards (betulinic acid and doxorubicin) in similar conditions.

View Article and Find Full Text PDF

The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!