Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photoacoustic imaging of elastomers has important biomedical value. However, a bright background, e.g., blood vessels in living tissue, brings a challenge for photoacoustic elastography. In this study, we predicted that the spectrum of photoacoustic signals from elastomers with high elasticity could appear as narrow peaks at the eigen-frequencies of elastomers, but the signals from a bright background, e.g., blood vessel, show flat broadband spectrum for their low-quality factor. Even when the two kinds of signals are mixed together, the signals from elastomers can be identified from the spectrum since they present as convex narrow peaks on a wide base. Based on this factor, we propose a multispectral photoacoustic holography to realize selective imaging of tiny elastomers. This method recovers the image only using several frequency components in photoacoustic signals, instead of the whole-band signal. Since these narrow peaks in the spectrum correspond to the eigen-vibration of elastomers, the proposed method can highlight the elastomers with high elasticity from a bright background with low elasticity. The method was validated by experiments. This study might be helpful to localize elastic anomalous areas in the tissue, such as calcification in the vascular network, microcalcification in a tumor, and implants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.441660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!