Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Temporal discontinuity in the permittivity of a nondispersive dielectric (temporal boundary) is a conventional model for considering electromagnetic phenomena in dynamic materials and metamaterials. Here we apply a more general model of a Lorentz medium with the rapidly changing density of its structural elements (oscillators) or their resonant frequency to determine the realms of applicability of the conventional temporal boundary model. We demonstrate the dependence of the continuity conditions and the energy relations at a temporal boundary on the nonstationarity mechanism and the ratio between the rate of nonstationarity and the characteristic frequencies in the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.437419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!