In this Letter, we perform a comprehensive investigation on the optical characterization of micro-sized deep-ultraviolet (DUV) LEDs (micro-LEDs) emitting below 280 nm, highlighting the light extraction behavior in relation to the design of chip sidewall angle. We found that the micro-LEDs with a smaller inclined chip sidewall angle (∼33) have improved external quantum efficiency (EQE) performance 19% more than that of the micro-LEDs with a larger angle (∼75). Most importantly, the EQE improvement by adopting an inclined sidewall can be more outstanding as the diameter of the LED chip reduces from 40 to 20 . The enhanced EQE of the micro-LEDs with smaller inclined chip sidewall angles can be attributed to the stronger reflection of the inclined sidewall, leading to enhanced light extraction efficiency (LEE). In the end, the numerical optical modeling further reveals and verifies the impact of the sidewall angles on the LEE of the micro-LEDs, corroborating our experiment results. This Letter provides a fundamental understanding of the light extraction behavior with optimized chip geometry to design and fabricate highly efficient micro-LEDs in a DUV spectrum of the future.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.441285DOI Listing

Publication Analysis

Top Keywords

light extraction
16
chip sidewall
16
enhanced light
8
design chip
8
extraction behavior
8
sidewall angle
8
micro-leds smaller
8
smaller inclined
8
inclined chip
8
inclined sidewall
8

Similar Publications

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

Transferring knowledge learned from standard GelSight sensors to other visuotactile sensors is appealing for reducing data collection and annotation. However, such cross-sensor transfer is challenging due to the differences between sensors in internal light sources, imaging effects, and elastomer properties. By understanding the data collected from each type of visuotactile sensors as domains, we propose a few-sample-driven style-to-content unsupervised domain adaptation method to reduce cross-sensor domain gaps.

View Article and Find Full Text PDF

In the complex environment of fully mechanized mining faces, the current object detection algorithms face significant challenges in achieving optimal accuracy and real-time detection of mine personnel and safety helmets. This difficulty arises from factors such as uneven lighting conditions and equipment obstructions, which often lead to missed detections. Consequently, these limitations pose a considerable challenge to effective mine safety management.

View Article and Find Full Text PDF

Photoplethysmography is a widely used optical technique to extract physiological information non-invasively. Despite its large use and adoption, multiple factors influence the signal shape and quality, including the instrumentation used. This work analyzes the variability of the DC component of the PPG signal at three source-detector distances (6 mm, 9 mm, and 12 mm) using green, red, and infrared light and four photodiodes per distance.

View Article and Find Full Text PDF

Research on Digital Terrain Construction Based on IMU and LiDAR Fusion Perception.

Sensors (Basel)

December 2024

Institute of Automotive Engineering, Jiangsu University, Zhenjiang 212013, China.

To address the shortcomings of light detection and ranging (LiDAR) sensors in extracting road surface elevation information in front of a vehicle, a scheme for digital terrain construction based on the fusion of an Inertial Measurement Unit (IMU) and LiDAR perception is proposed. First, two sets of sensor coordinate systems were configured, and the parameters of LiDAR and IMU were calibrated. Then, a terrain construction system based on the fusion perception of IMU and LiDAR was established, and improvements were made to the state estimation and mapping architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!