AI Article Synopsis

  • Biodegradation significantly influences the properties and metal binding behavior of dissolved organic matter (DOM) in Dongping Lake, as analyzed through advanced spectroscopy techniques.
  • A study revealed that protein-like substances are predominant in the lake's DOM, showing reduced levels and increased humification throughout due to biodegradation effects.
  • The research found that protein-like substances have a stronger affinity for copper (Cu), while humic-like substances bind lead (Pb) more readily, with noticeable variations in metal binding ability across three distinct areas of the lake.

Article Abstract

Biodegradation is a key factor determining the properties and metal binding behaviour of dissolved organic matter (DOM). In this study, the contributions of biodegradation to DOM properties and metal binding behaviour in Dongping Lake were explored by using synchronous fluorescence (SF) spectroscopy, two-dimensional correlation spectroscopy (2D-COS) excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). According to the ratio of the fluorescence intensity of different materials to the entire fluorescence intensity (%F), protein-like substances were the main substances of DOM in this lake. The reduction of protein-like substances and the enhancement of humification could be found in the whole lake under the influence of biodegradation. 3 areas (Area A, Area B and Area C) were obtained by principal component analysis (PCA), however, PCA results suggested that DOM properties and sources had some differences in the 3 areas, and DOM bioavailability in Area C was stronger than that in the other 2 areas. With copper (Cu) and lead (Pb) addition, different substances exhibited various affinities to different metal types. The locations of crosspeaks in asynchronous maps illustrated that protein-like substances were more affiliative with Cu, while humic-like substances were bound to Pb earlier. Biodegradation had a conspicuous impact the metal binding ability of DOM in Dongping Lake. The effective quenching constants (LogK) of protein-like substances (protein-like component 2: LogK = 3.85 ± 0.23, LogK = 3.32 ± 0.23) were higher than those of humic-like substances (humic-like component 3: LogK = 3.15 ± 0.02, LogK = 2.93 ± 0.17) for both Cu and Pb before biodegradation. When biodegradation was finished, binding ability of humic-like substances was enhanced from 3.15 ± 0.02 to 3.41 ± 0.10 for DOM-Cu and 2.93 ± 0.17 to 3.79 ± 0.15 for DOM-Pb. On a spatial scale, metal binding ability of DOM in Dongping Lake also changed due to the influence of biodegradation. For both DOM-Cu and DOM-Pb, binding ability in south of Dongping Lake was stronger than that in other areas with the end of biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150485DOI Listing

Publication Analysis

Top Keywords

metal binding
16
dongping lake
16
protein-like substances
16
binding ability
16
influence biodegradation
12
humic-like substances
12
biodegradation
9
substances
9
dissolved organic
8
organic matter
8

Similar Publications

Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.

View Article and Find Full Text PDF

Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF

Manipulating metal-ligand binding in allosteric coordination complexes through ring strain.

Chem Commun (Camb)

January 2025

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA.

The weak-link approach (WLA) to organometallic complexes offers a powerful method to create allosteric shape-shifting coordination complexes. However, chemically tuning the metal-ligand interactions entails challenging syntheses. This study explores the influence of ring strain on the lability of the platinum-sulfur interaction within WLA complexes, providing a simpler alternative to chemical modifications.

View Article and Find Full Text PDF

Structural insights into the activation mechanism of the human zinc-activated channel.

Nat Commun

January 2025

State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.

The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.

View Article and Find Full Text PDF

Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!