We have investigated how connexin 46 (Cx46) regulates lens stiffness by studying different Cx46 knockout (Cx46KO) mice. A modified muscle lever system was used to determine the lens stiffness of wild-type (WT) and Cx46KO mice at the C57BL/6J (B6) and the 129SvJae (129) strain backgrounds according to total lens displacement at the point of maximum force when fresh lenses were compressed with a maximum of 2 mN of force. In comparison to B6-WT controls, young and old B6-Cx46KO lenses showed 23% and 28% reductions in lens displacement, respectively. Comparing to 129-WT controls, old 129-Cx46KO lenses showed 50% reduction in the lens displacement while young 129-Cx46KO lenses displayed similar displacement. Old B6-Cx46KO and old 129-Cx46KO lenses showed almost identical lens displacement, 128 μm versus 127 μm. Morphological data revealed unique changes of peripheral fiber cell shapes in young B6-WT lenses but not in young B6-Cx46KO, 129-WT and 129-Cx46KO lenses. This work reveals Cx46 deletion increases the lens stiffness in both young and old mice at B6 strain background but only in old mice at 129 strain background which contains intermediate filament CP49 gene deletion. Cx46 impairment increases old mouse lens stiffness and may contribute to the development of presbyopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054276 | PMC |
http://dx.doi.org/10.1016/j.exer.2021.108777 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Physics, Boise State University, Boise, Idaho, United States.
Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.
Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.
Gastroenterol Hepatol
January 2025
Servicio de Hepatología, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España. Electronic address:
Portal hypertension is a hemodynamic abnormality that complicates the course of cirrhosis, as well as other diseases that affect the portal venous circulation. The development of portal hypertension compromises prognosis, especially when it rises above a certain threshold known as clinically significant portal hypertension (CSPH). In the consensus conference on Portal Hypertension promoted by the Spanish Association for the Study of the Liver and the Hepatic and Digestive diseases area of the Biomedical Research Networking Center (CIBERehd), different aspects of the diagnosis and treatment of portal hypertension caused by cirrhosis or other diseases were discussed.
View Article and Find Full Text PDFBackground: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.
View Article and Find Full Text PDFVestn Oftalmol
December 2024
Institute of Regenerative Medicine of the Sechenov University, Moscow, Russia.
Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.
Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.
Nanophotonics
July 2024
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!