Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the last few years, important advances have been made in big data exploration, complex pattern recognition and prediction of complex variables. Machine learning (ML) algorithms can efficiently analyze voluminous data, identify complex patterns and extract conclusions. In chemical engineering, the application of machine learning approaches has become highly attractive due to the growing complexity of this field. Machine learning allows computers to solve problems by learning from large data sets and provides researchers with an excellent opportunity to enhance the quality of predictions for the output variables of a chemical process. Its performance has been increasingly exploited to overcome a wide range of challenges in chemistry and chemical engineering, including improving computational chemistry, planning materials synthesis and modeling pollutant removal processes. In this review, we introduce this discipline in terms of its accessible to chemistry and highlight studies that illustrate in-depth the exploitation of machine learning. The main aim of the review paper is to answer these questions by analyzing physicochemical processes that exploit machine learning in organic and inorganic pollutants removal. In general, the purpose of this review is both to provide a summary of research related to the removal of various contaminants performed by ML models and to present future research needs in ML for contaminant removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!