An ultrathin tactile sensor with directional sensitivity and capable of mapping at a high spatial resolution is proposed and demonstrated. Each sensor node consists of two gallium nitride (GaN) nanopillar light-emitting diodes. Shear stress applied on the nanopillars causes the electrons and holes to separate in the radial direction and reduces the light intensity emitted from the nanopillars. A sensor array comprising 64 sensor nodes was designed and fabricated. Two-dimensional directional sensitivity was experimentally confirmed with a dynamic range of 1-30 mN and an accuracy of ±1.3 mN. Tracking and mapping of an external force moving across the sensor array were also demonstrated. Finally, the proposed tactile sensor's sensitivity was tested with a fingertip gently moving across the sensor array. The sensor successfully registered the finger movement's direction and fingerprint pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c02837 | DOI Listing |
HGG Adv
January 2025
Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:
Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.
View Article and Find Full Text PDFViruses
December 2024
Duke Center for Human Systems Immunology, Duke University, Durham, NC 27701, USA.
Kidney transplant recipients require a lifelong protocol of immunosuppressive therapy to prevent graft rejection. However, these same medications leave them susceptible to opportunistic infections. One pathogen of particular concern is human polyomavirus 1, also known as BK virus (BKPyV).
View Article and Find Full Text PDFPharmaceutics
December 2024
Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), FEUP Campus, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.
The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Communications Engineering, University of the Basque Country, 48013 Bilbao, Spain.
Optical Fiber Displacement Sensors (OFDSs) provide several advantages over conventional sensors, including their compact size, flexibility, and immunity to electromagnetic interference. These features make OFDSs ideal for use in confined spaces, such as turbines, where direct laser access is impossible. A critical aspect of OFDS performance is the geometry of the fiber bundle, which influences key parameters such as sensitivity, range, and dead zones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!