Objectives This review is motivated by the observation that clinical decision-making in mental health is limited by the nature of the measures obtained in conventional clinical interviews and the difficulty for clinicians to make accurate predictions about their patients' future mental states. Our objective is to offer a representative overview of the potential of digital phenotyping coupled with machine learning to address this limitation, while highlighting its own current weaknesses. Methods Through a non-systematic narrative review of the literature, we identify the technological developments that make it possible to quantify, moment by moment and in ecologically valid settings, the human phenotype in various psychiatric populations using the smartphone. Relevant work is also selected in order to determine the usefulness and limitations of machine learning to guide predictions and clinical decision-making. Finally, the literature is explored to assess current barriers to the adoption of such tools. Results Although emerging from a recent field of research, a large body of work already highlights the value of measurements extracted from smartphone sensors in characterizing the human phenotype in behavioral, cognitive, emotional and social spheres that are all impacted by mental disorders. Machine learning permits useful and accurate clinical predictions based on such measures, but suffers from a lack of interpretability that will hamper its use in clinical practice in the near future. Moreover, several barriers identified both on the patient and clinician sides currently hamper the adoption of this type of monitoring and clinical decision support tools. Conclusion Digital phenotyping coupled with machine learning shows great promise for improving clinical practice in mental health. However, the youth of these new technological tools requires a necessary maturation process to be guided by the various concerned actors so that these promises can be fully realized.
Download full-text PDF |
Source |
---|
Genet Med
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:
Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFSci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.
View Article and Find Full Text PDFSci Rep
December 2024
Computer Engineering Department, Lorestan University, Khorramabad, Iran.
This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!