The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE output, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling. If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies. To determine the impact of method choice, we applied recently described estimators of K to re-estimate genetic structure in 41 empirical microsatellite data sets; 15 from a broad range of taxa and 26 from one phylogenetic group, coral. We compared alternative estimates of K (Puechmaille statistics) with traditional (ΔK and posterior probability) estimates and found widespread disagreement of estimators across data sets. Thus, one estimator alone is insufficient for determining the optimal number of clusters; this was regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular variance (AMOVA) did not necessarily clarify which clustering solution was best. To better infer population structure, we suggest a combination of visual inspection of STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition to ΔK. Disagreement between traditional and recent estimators may have important biological implications, such as previously unrecognized population structure, as was the case for many studies reanalysed here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13522 | DOI Listing |
Cancer Genet
December 2024
Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware St SE, Minneapolis, MN 55455, USA.
Objective: Studies of squamous cell carcinoma of the head and neck (HNSCC) have demonstrated the importance of nuclear receptors and their associated coregulators in the development and treatment of HNSCC. We sought to characterize members of the nuclear receptor super family through interrogation of RNA-Seq and microarray data.
Materials And Methods: TCGA RNA-Seq data within the cBioportal platform comparing HNSCC samples (n = 515 patients with RNA-Seq data) to normal tissue (n = 82 patients) was interrogated for significant differences in nuclear receptor expression.
Curr Opin Plant Biol
January 2025
Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
Plant diseases constantly threaten crops and food systems, while global connectivity further increases the risks of spreading existing and exotic pathogens. Here, we first explore how an integrative approach involving plant pathway knowledgegraphs, differential gene expression data, and biochemical data informing Raman spectroscopy could be used to detect plant pathways responding to pathogen attacks. The Plant Reactome (https://plantreactome.
View Article and Find Full Text PDFLifetime Data Anal
January 2025
Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Bat. Braconnier, 43, blvd du 11 novembre 1918, F - 69622, Villeurbanne Cedex, France.
Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan-Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Urology, Ji'an Third People's Hospital, Ji'an 343000, Jiangxi, China.
As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
Reduced representation sequencing (RRS) has proven to be a cost-effective solution for sequencing subsets of the genome in non-model species for large-scale studies. However, the targeted nature of RRS approaches commonly introduces large amounts of missing data, leading to reduced statistical power and biased estimates in downstream analyses. Genotype imputation, the statistical inference of missing sites across the genome, is a powerful alternative to overcome the caveats associated with missing sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!