In , two chromosomes require special mechanisms to balance their transcriptional output to the rest of the genome. These are the male-specific lethal complex targeting the male X chromosome and Painting of fourth targeting chromosome 4. Here, we explore the role of histone H3 methylated at lysine-36 (H3K36) and the associated methyltransferases—Set2, NSD, and Ash1—in these two chromosome-specific systems. We show that the loss of Set2 impairs the MSL complex–mediated dosage compensation; however, the effect is not recapitulated by H3K36 replacement and indicates an alternative target of Set2. Unexpectedly, balanced transcriptional output from the fourth chromosome requires intact H3K36 and depends on the additive functions of NSD and Ash1. We conclude that H3K36 methylation and the associated methyltransferases are important factors to balance transcriptional output of the male X chromosome and the fourth chromosome. Furthermore, our study highlights the pleiotropic effects of these enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938550 | PMC |
http://dx.doi.org/10.1126/sciadv.abh4390 | DOI Listing |
Genes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
Sci Rep
January 2025
Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research.
View Article and Find Full Text PDFThe cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:
Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!