The Preparation of a Water-Soluble Phospholate-Based Macrocycle for Constructing Artificial Light-Harvesting Systems.

Chemistry

Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Published: December 2021

On the basis of cyclotrixylohydroquinoylene (CTX), a novel water-soluble phospholate-based CTX derivative (WPCTX) was prepared with facile synthetic procedure and satisfying yield. Several model guest molecules were selected to investigate WPCTX's host-guest properties. Based on the study of the host and model guest complexation, a tetraphenylethylene derivative from model guest was employed as a guest molecule (G) to form WPCTX⊃G nanoparticles (NPs) with WPCTX through further supramolecular self-assembly in water. Moreover, a hydrophobic fluorescent dye, Eosin Y(ESY) or Nile red (NiR), was encapsulated in WPCTX⊃G NPs to construct two types of artificial light-harvesting systems. Their high antenna effect demonstrated such NPs successfully mimicked light-harvesting systems in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202102758DOI Listing

Publication Analysis

Top Keywords

light-harvesting systems
12
model guest
12
water-soluble phospholate-based
8
artificial light-harvesting
8
preparation water-soluble
4
phospholate-based macrocycle
4
macrocycle constructing
4
constructing artificial
4
systems basis
4
basis cyclotrixylohydroquinoylene
4

Similar Publications

Light-Harvesting Spin Hyperpolarization of Organic Radicals in a Metal-Organic Framework.

J Am Chem Soc

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.

View Article and Find Full Text PDF

The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.

View Article and Find Full Text PDF

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!