Background: Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimension to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess whether these arise from different processes in each of these groups.

Results: There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F (2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differences between groups for the detrended fluctuation analysis or fractal dimension.

Conclusions: The underlying nature of mood variability is in keeping with that of a chaotic system, which means that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window for episode prediction in BD will be inevitably short.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8486895PMC
http://dx.doi.org/10.1186/s40345-021-00235-3DOI Listing

Publication Analysis

Top Keywords

mood energy
12
bipolar disorder
8
nonlinear techniques
8
assess underlying
8
energy fluctuations
8
lyapunov exponent
8
mood
6
futility long-term
4
long-term predictions
4
predictions bipolar
4

Similar Publications

A combination of femtosecond stimulated Raman scattering and surface-enhanced Raman scattering, termed surface-enhanced stimulated Raman scattering (SE-FSRS), was proposed to leverage both temporal precision and sensitivity for advanced molecular dynamics analysis. During the initial successful implementations of this approach, unexpected spectral distortions were observed, and several potential explanations were proposed. Further progress in this novel technique and its broader implementation requires a profound understanding of the factors influencing the shape of the registered spectra and the underlying mechanisms.

View Article and Find Full Text PDF

Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood.

View Article and Find Full Text PDF

Background: While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health.

View Article and Find Full Text PDF

An observed "sandwich" framework mediated via sulfate ions as electron shuttle for efficient electro-oxidation of organic pollutants.

Water Res

January 2025

Environmental Energy Engineering (E(3)) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China. Electronic address:

"Electro-oxidation processes are effective in treating sulfate-rich organic wastewater. However, this technology development has been hindered by the poor understanding of the role of sulfate ions. This paper reports that high concentration of sulfate ions significantly enhanced the electro-oxidation of organic pollutants.

View Article and Find Full Text PDF

Geopolitical conflicts and other risk events are subtly reshaping the global political and economic landscape, gradually disrupting the balance between economic development and ecological sustainability. Understanding the pathways through which geopolitical risks affect the ecological footprint is crucial for achieving ecological sustainability goals. This study employed dual machine learning models for high-precision analysis to deeply explore the intrinsic patterns of how geopolitical risks impact the ecological footprint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!