Water containing ultrafine/nano bubbles (UFBs) promoted the growth of tomato (Solanum lycopersicum) in soil damaged by cultivation of tomato in the previous year or bacterial wilt-like disease and also promoted the growth of lettuce (Lactuca sativa) when lettuce was grown in the soil damaged by repeated cultivation of lettuce. On the other hand, UFB supply did not affect plant growth in rock wool or healthy soil. Furthermore, the growth of lettuce was not affected by UFB water treatment in the soil damaged by the cultivation of tomato. UFB water partly suppressed the growth of the pathogen of bacteria wilt disease, Ralstonia solanacearum in vitro. These data suggest that UFB water is effective to recover the plant growth from soil damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bbb/zbab169 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany.
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control.
View Article and Find Full Text PDFPlant Commun
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:
UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.
View Article and Find Full Text PDFViruses
January 2025
Department of Plant Pathology, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS 66506, USA.
Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.
View Article and Find Full Text PDFViruses
January 2025
Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou 311100, China.
, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of remains limited. In this study, plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens.
View Article and Find Full Text PDFViruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!