Endothelial dysfunction participates in the pathogenesis of various cardiovascular disorders, and dysregulated angiogenesis involves the vascular endothelial growth factor (VEGF)-matrix metalloproteinases (MMP) system. Nicotinamide phosphoribosyltransferase (NAMPT) is known to enhance endothelial function and angiogenesis. The study found that NAMPT overexpression protected human coronary artery endothelial cells (HCAECs) from H2O2-induced injury through promoting cell viability, inhibiting cell apoptosis, enhancing cell motility, and promoting tube formation. Through analyses based on 2 Protein-Protein Interaction databases, Mentha and BioGrid, we identified CUL5 as a protein that may interact with NAMPT, which was then validated by Co-IP experiments. Through interacting with NAMPT, CUL5 inhibited NAMPT expression. In contrast to NAMPT, CUL5 overexpression further aggravated H2O2-induced HCAEC dysfunction. In the meantime, CUL5 overexpression reduced, whereas NAMPT overexpression increased the phosphorylation of p38 and Akt and the protein levels of VEGF and MMP2. More importantly, NAMPT overexpression partially reversed the effects of CUL5 overexpression on H2O2-stimulated HCAECs and the MAPK/phosphatidylinositol 3-kinase-Akt/VEGF/MMP signaling. In conclusion, CUL5 interacts with NAMPT in H2O2-stimulated HCAECs, suppressing cell viability, promoting cell apoptosis, and inhibiting cell mobility and tube formation. NAMPT overexpression protects against H2O2-induced HCAEC dysfunction by promoting cell viability, inhibiting cell apoptosis, and enhancing cell mobility and tube formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0000000000001146 | DOI Listing |
Aging Cell
November 2024
Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs their stemness and osteogenic differentiation, which is the principal cause of senile osteoporosis (SOP). Imbalances in nicotinamide phosphoribosyltransferase (NAMPT) homeostasis have been linked to aging and various diseases. Herein, reduction of NAMPT and impaired osteogenesis were observed in BMSCs from aged human and mouse.
View Article and Find Full Text PDFGlia
January 2025
Department of Biochemistry. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
Histidine dipeptides (HDs) are synthesized in brain oligodendrocytes by carnosine synthase (carns1), but their role is unknown. Using metabolomics and in vivo experiments with both constitutive and oligodendrocyte-selective carns1-KO mouse models, we found that HDs are critical for oligodendrocyte survival and protect against oxidative stress. Carns1-KO mouse models had lower numbers of mature oligodendrocytes, increased lipid peroxidation, and behavioral changes.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
The serine/threonine kinase PAK4 plays a crucial role in regulating cell proliferation, survival, migration, and invasion. Overexpression of PAK4 correlates with poor prognosis in some cancers. KPT-9274, a PAK4 inhibitor, significantly reduces the growth of triple-negative breast cancer cells and mammary tumors in mouse models, and it also inhibits the growth of several other types of cancer cells.
View Article and Find Full Text PDFNat Commun
July 2024
School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis.
View Article and Find Full Text PDFMol Biotechnol
July 2024
Department of Clinical Laboratory, Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, China.
Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. CircABHD2 exhibits down-regulation in both endometrial cancer (EC) cells and tissues, but the biological roles and mechanisms of action in EC are still unclear. This study aims to provide a theoretical basis for the role of circABHD2 in EC and potential targets for individualized precision therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!