Narrow bandgap donor-acceptor organic semiconductors are generally considered to show a closed-shell singlet ground state, and their radicals are reported as impurities, defects, polarons, and charge transfer monoradicals. Herein, we systematically investigated the open-shell singlet diradical electronic ground state of two diketopyrrolopyrrole-based compounds via the combination of electron spin resonance (ESR), nuclear magnetic resonance, superconducting quantum interference device magnetometry, and theoretical calculations. It is widely known that the quinoidal character will be significantly enhanced in the aggregation state accompanied by improved planarity and enhanced delocalization. We proposed an aggregation-induced radical and captodative effect as the driving force for the formation and stabilization of the open-shell quinoid diradical based on the ESR test in different proportions of mixed solvents. Our results provided a novel view for understanding the intrinsic chemical structure of donor-acceptor organic semiconductors, the open-shell singlet and thermally excited triplet electronic states, and the unexpected physical processes between the ground state and the excited state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c02463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!