Molecular self-assembly is a ubiquitous phenomenon in which individual atoms or molecules set up an ordered structure. It is of high interest for understanding the biology and a variety of diseases at the molecular level. In this work, we studied the self-assembly of tyrosine molecules extensive molecular dynamics simulations. The formation of structures by self-assembly was systematically studied at various concentrations, from very low to very high. The temperature was kept constant, at which, in our former studies, we have already observed well-formed self-assembled structures. Depending on the concentration, the system displays a wide range of different structures, ranging from freely scattered monomers to very well formed four-fold structures. Different regimes of concentration dependence are observed. The results are proved by calculating the moments of inertia of the structures and the number of hydrogen bonds formed. Free energy landscapes calculated for the number of hydrogen bonds the number of contacts within a criterion provide insights into the structures observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp03031k | DOI Listing |
J Control Release
January 2025
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom. Electronic address:
Nat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
Biofabrication
December 2024
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
Bioprinting a resilient yet optically transparent corneal tissue substitute remains a challenge. In this study we introduce an innovative methodology aimed at bolstering the mechanical and optical attributes of silk fibroin (SF) hydrogels, pivotal for the progression of cornea tissue engineering. We devised a unique eosin Y-based photoinitiator system to instigate di-tyrosine linkages within highly concentrated pristine SF solutions under green light exposure.
View Article and Find Full Text PDFSmall
November 2024
Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
Covalent crosslinking of silk fibroin via native tyrosine residues has been extensively explored; however, while these materials are very promising for biomedical, optical, soft robotics, and sensor applications, their structure and mechanical properties are unstable over time. This instability results in spontaneous silk self-assembly and stiffening over time, a process that is poorly understood. This study investigates the interplay between self-assembly and di-tyrosine bond formation in silk hydrogels photo-crosslinked using ruthenium (Ru) and sodium persulfate (SPS) with visible light.
View Article and Find Full Text PDFNanoscale Horiz
December 2024
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
Peptide-based biofluorescents are of great interest due to their controllability and biocompatibility, as well as their potential applications in biomedical imaging and biosensing. Here, we present a simple approach to synthesizing full-color fluorescent nanomaterials with broad-spectrum fluorescence emissions, high optical stability, and long fluorescence lifetimes. By doping amino acids during the enzyme-catalyzed oxidative self-assembly of tyrosine-based peptides, we can precisely control the intermolecular interactions to obtain nanoparticles with fluorescence emission at different wavelengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!