The application of remote sensing in plant breeding can provide rich information about the growth processes of plants, which leads to better understanding concerning crop yield. It has been shown that traits measured by remote sensing were also beneficial for genomic prediction (GP) because the inclusion of remote sensing data in multitrait models improved prediction accuracies of target traits. However, the present multitrait GP model cannot incorporate high-dimensional remote sensing data due to the difficulty in the estimation of a covariance matrix among the traits, which leads to failure in improving its prediction accuracy. In this study, we focused on growth models to express growth patterns using remote sensing data with a few parameters and investigated whether a multitrait GP model using these parameters could derive better prediction accuracy of soybean [Glycine max (L.) Merr.] biomass. A total of 198 genotypes of soybean germplasm were cultivated in experimental fields, and longitudinal changes of their canopy height and area were measured continuously via remote sensing with an unmanned aerial vehicle. Growth parameters were estimated by applying simple growth models and incorporated into the GP of biomass. By evaluating heritability and correlation, we showed that the estimated growth parameters appropriately represented the observed growth curves. Also, the use of these growth parameters in the multitrait GP model contributed to successful biomass prediction. We conclude that the growth models could describe the genetic variation of soybean growth curves based on several growth parameters. These dimension-reduction growth models will be indispensable for extracting useful information from remote sensing data and using this data in GP and plant breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tpg2.20157 | DOI Listing |
Environ Monit Assess
January 2025
Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.
The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.
View Article and Find Full Text PDFUrban Inform
January 2025
IVL Swedish Environmental Research Institute LTD., PO Box 530 21, SE-400 14 Gothenburg, Sweden.
In response to the demand for advanced tools in environmental monitoring and policy formulation, this work leverages modern software and big data technologies to enhance novel road transport emissions research. This is achieved by making data and analysis tools more widely available and customisable so users can tailor outputs to their requirements. Through the novel combination of vehicle emissions remote sensing and cloud computing methodologies, these developments aim to reduce the barriers to understanding real-driving emissions (RDE) across urban environments.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Science and Technology - Food and Nutrition Research Institute, Taguig, Metro Manila, Philippines.
This study aimed to assess the environmental variables affecting the Body Mass Index of older adults at neighborhood levels (1 ha) while mapping probability distributions of normal, overweight-obese, and underweight older adults. We applied a data-driven method that integrates open-access remote sensing products and geospatial data, along with the first nutritional survey in the Philippines with geo-locations conducted in 2021. We used ensemble machine learning of different presence-only and presence-absence models, all subjected to hyperparameter tuning and variable decorrelation.
View Article and Find Full Text PDFHeliyon
January 2025
Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650500, China.
Global population growth and uncontrolled are creating threats to agricultural land. To address urbanization, proactive planning is required. Land use and land cover (LULC) classification maps for 2002-2022 were analyzed using remote sensing (RS) and geographic information systems (GIS) in Sahiwal, Punjab, Pakistan.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Research in Geospatial Data and Intelligence, Department of Geomatics Sciences, Université Laval, 1055, Avenue Du Séminaire, Québec, QC, Canada.
To reach a destination within the community, it is crucial that wheelchair users possess the ability to plan, execute, and acquire knowledge of routes in a safe and efficient manner. While numerous methods have been introduced for assessing the accessibility of sidewalks, existing studies often overlook the variations in the perception of the accessibility of long segments based on each wheelchair user's capabilities. Extended distances may lead to increased fatigue, impacting the ability of individuals with mobility disabilities to navigate sidewalks comfortably and independently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!