Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608971PMC
http://dx.doi.org/10.1007/s13311-021-01115-5DOI Listing

Publication Analysis

Top Keywords

ipsc-derived neurons
12
neurons organoids
12
screening platforms
8
platforms genetic
4
genetic epilepsies-zebrafish
4
epilepsies-zebrafish ipsc-derived
4
organoids
4
organoids advances
4
advances molecular
4
molecular cellular
4

Similar Publications

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Background/objectives: Strabismus is the most common ocular disorder of childhood. Three rare, recurrent genetic duplications have been associated with both esotropia and exotropia, but the mechanisms by which they contribute to strabismus are unknown. This work aims to investigate the mechanisms of the smallest of the three, a 23 kb duplication on chromosome 4 (hg38|4:25,554,985-25,578,843).

View Article and Find Full Text PDF

Single Cell Proteomics Reveals Specific Cellular Subtypes in Cardiomyocytes Derived from Human iPSCs and Adult Hearts.

Mol Cell Proteomics

January 2025

Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048. Electronic address:

Single cell proteomics was performed on human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, and adult cardiomyocytes. Over 700 proteins could be simultaneously measured in each cell revealing unique subpopulations. A sub-set of iPSCs expressed higher levels of Lin28a and Tra-1-60 towards the outer edge of cell colonies.

View Article and Find Full Text PDF

Deregulated ion channels contribute to RHOBTB2-associated developmental and epileptic encephalopathy.

Hum Mol Genet

January 2025

Department of Human Genetics, Inselspital Bern, University of Bern, Freiburgstrasse 15, Bern 3010, Switzerland.

While de novo missense variants in the BTB domains of atypical RhoGTPase RHOBTB2 cause a severe developmental and epileptic encephalopathy, de novo missense variants in the GTPase domain or bi-allelic truncating variants are associated with more variable neurodevelopmental and seizure phenotypes. Apart from the observation of RHOBTB2 abundance resulting from BTB-domain variants and increased seizure susceptibility in Drosophila overexpressing RhoBTB, our knowledge on RHOBTB2-related pathomechanisms is limited. We now found enrichment for ion channels among the differentially expressed genes from RNA-Seq on fly heads overexpressing RhoBTB.

View Article and Find Full Text PDF

Aging leads to cognitive decline and increased risk of neurodegenerative diseases. While molecular changes in central nervous system (CNS) cells contribute to this decline, the mechanisms are not fully understood. Long non-coding RNAs (lncRNAs) are key regulators of cellular functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!