Influence of nitrogen forms, pH, and water levels on cadmium speciation and characteristics of cadmium uptake by rapeseed.

Environ Sci Pollut Res Int

Crop Research Institute, Sichuan Academy of Agriculture Sciences, Chengdu, 610066, China.

Published: February 2022

Rapeseed (Brassica napus L.) is an ideal crop for remediation in cadmium (Cd)-contaminated soil in farmland. The main objective of this study was focused on the combined effects of four nitrogen forms (urea, ammonium nitrogen, nitrate nitrogen, ammonium nitrate fertilizer), four pH levels (5, 6, 7, 8), and three water levels (low water, middle water, high water) on Cd speciation and characteristics of Cd uptake by rapeseed. A pot experiment was conducted at the Xindu Experimental Park in Sichuan Province, China. Experimental results indicated that the interaction effects of pH and nitrogen forms, three factors on Cd speciation (except organic-bound Cd and exchangeable Cd), were significant and the interaction effects of pH and nitrogen forms on Cd uptake by rapeseed also was significant only under the condition of planting rapeseed. The higher the water level was or the lower the pH value was, the better the repair effect rapeseed to Cd was. High water significantly increased the stem Cd content by 11.89% and 29.55% through significantly increasing the content of exchangeable Cd by 23.40% and 52.63%, respectively, compared with middle water and low water as planting rapeseed, and pH 5 significantly increased the stem Cd content, total Cd enrichment coefficients, bio-availability coefficient, and Cd removal rate by 24.45~40.33%, 49.45~76.62%, 60.00~166.67%, and 16.67~26.00%, respectively, through significantly increasing the content of exchangeable Cd by 37.78~113.79%, compared with pH 7 and pH 8 as the significant decreasing of carbonate-bound Cd, bound to Fe-Mn oxide, and content of organic-bound Cd and residual Cd. Ammonium nitrate also significantly increased total Cd enrichment coefficients, bio-availability coefficient, and Cd removal rate by 45.63~138.10%, 21.05~109.09%, and 40.00~77.50%, respectively, compared with other three nitrogen forms as good growth and Cd resistance of rapeseed. Path analysis structural equation modeling revealed that content of exchangeable Cd and residual Cd had significant and direct path coefficients with variances in stem Cd content of rapeseed. Combined with the safety of edible oil, the best management practices for optimal remediation efficiency of rapeseed to Cd-contaminated soil were ammonium nitrate fertilizer, pH = 5, and high water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-16671-8DOI Listing

Publication Analysis

Top Keywords

nitrogen forms
20
uptake rapeseed
12
effects nitrogen
12
ammonium nitrate
12
high water
12
stem content
12
content exchangeable
12
water
10
rapeseed
10
water levels
8

Similar Publications

Overlooked risks of photoaging of nitrogenous microplastics with natural organic matter in water: Augmenting the formation of nitrogenous disinfection by-products.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:

In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.

View Article and Find Full Text PDF

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

A solvent dependent C(sp3)-CF3 bond-forming reductive elimination from neutral four-coordinate Cu(III) complexes [(L)Cu(CF3)2(CH2CO2tBu)] (L = pyridine or its derivatives) is described. Reactions in less polar solvent ClCH2CH2Cl proceed via a concerted bond breaking/bond forming process along with the reorientation of the ligand, while reaction in polar solvent DMF occurs via a rate limiting ligand-dissociation, followed by C(sp3)-CF3 reductive elimination from the resulting three-coordinate intermediate. These mechanistic proposals are supported by kinetic studies that included ligand and temperature effects, as well as DFT calculations.

View Article and Find Full Text PDF

Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds.

ACS Catal

January 2025

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands.

The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored.

View Article and Find Full Text PDF

The reaction chemistry of an unprecedented 'inorganic cumulene' - featuring a five-atom BNBNB chain - towards C[double bond, length as m-dash]O (and related) multiple bonds is disclosed. In marked contrast to related all-carbon systems, the intrinsic polarity of the BNBNB chain (featuring electron-rich nitrogen and electron-deficient boron centres) enables metathesis chemistry with electrophilic heteroallenes such as CO and with organic carbonyl compounds. Transfer of the borylimide unit to [CO], [CS], [PP{(NDippCH)}] and [C(H)Ph] moieties generates (boryl)N[double bond, length as m-dash]C[double bond, length as m-dash]X systems (X = O, S, PP{(NDippCH)}, C(H)Ph), driven thermodynamically by B-O bond formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!